Enhanced Selective Non-Catalytic Reduction (SNCR) for Refinery Applications: Pilot-Scale Test Data With a Hydrogen Promoter

Author(s):  
Larry Swanson ◽  
Wei Zhou ◽  
David Moyeda ◽  
Christopher Samuelson

Selective non-catalytic reduction technology (SNCR) is an effective and economical method of reducing NOX emissions for a wide range of industrial combustion systems. It is widely known that the traditional SNCR temperature window is centered around 1,200 to 1,255 K [1]. However, for some applications, the flue gas temperatures in boilers, oxidizers, and heaters range from 950 to 1150 K. At these lower temperatures, injection of an amine reagent into flue gas no longer actively reduces NOX, but instead passes through the system and exits as ammonia slip. Earlier studies have shown that at lower temperatures, hydrogen and other promoters can be added to the system to shift the SNCR window to a lower temperature range, enhancing or promoting SNCR NOX reduction performance [2–5]. This extended abstract describes pilot-scale test results for an enhanced SNCR process (ESNCR) that uses hydrogen as the SNCR promoter. The impacts of flue gas temperature, hydrogen concentration, CO concentration, and SO2 concentration on ESNCR NOX reduction performance are presented.

1995 ◽  
Vol 46 (4-6) ◽  
pp. 1103-1106 ◽  
Author(s):  
Hideki Namba ◽  
Okihiro Tokunaga ◽  
Shoji Hashimoto ◽  
Tadashi Tanaka ◽  
Yoshimi Ogura ◽  
...  

2019 ◽  
Vol 82 ◽  
pp. 01016 ◽  
Author(s):  
Andrzej Kwiczala ◽  
Robert Wejkowski

This article exhibits the results of the analysis performed to verify the effectiveness of the hybrid flue gas denitrification system (herein referred to as HDS) which involved the retrofitting for selective catalytic reduction (SCR) material into a regenerative rotary air heater (RAH). A numerical model corresponding to the actual pilot scale RAH operating conditions was developed. The ultimate intent of the numerical model is to provide a platform where the technology can be implemented on full scale air preheaters. The numerical analysis performed on the pilot scale HDS installation showed a 3% decrease in heat exchange efficiency in the exchanger. This decrease was significantly minimized by the use of blades adjusting the distribution of flue gases entering the RAH. This means that the exhaust gas temperature at the exchanger outlet increased by 4°C, which corresponds to an average of 0.3% increase in the boiler outlet loss. It was also recognized that the air temperature was reduced by 8°C, which does not translate into significant changes in boiler performance parameters. other boiler operating parameters in a noticeable way during operation.


1995 ◽  
Vol 45 (6) ◽  
pp. 1021-1027 ◽  
Author(s):  
You Osada ◽  
Koichi Hirota ◽  
Masahiro Sudo ◽  
Shigekazu Baba ◽  
Eiichi Shibuya ◽  
...  

1995 ◽  
Vol 46 (4-6) ◽  
pp. 1089-1092 ◽  
Author(s):  
Koichi Hirota ◽  
Okihiro Tokunaga ◽  
Teijiro Miyata ◽  
Shoichi Sato ◽  
You Osada ◽  
...  

Author(s):  
Yufan Bu ◽  
Limin Wang ◽  
Xiaoyang Wei ◽  
Lei Deng ◽  
Defu Che

Nitrogen oxide (NOx) emitted from boilers in coal-fired power plant may be reduced by 90 percent through the application of the selective catalytic reduction (SCR). However, the escaped ammonia from the SCR systems could react with sulfur oxides (SOx) in the flue gas to form ammonium bisulfate (ABS) in exhaust systems. The blockage and corrosion caused by ABS seriously impact the rotary air preheater (RAPH), which would not only increase operating cost on ash-blowing and cleaning but also lead to unplanned outage. To solve the problem, in this paper a novel preheater system is proposed. A single preheater is split into two sub-preheaters, between which the main flue gas flow is mixed with the recirculated flue gas from outlet of the lower-temperature preheater. After the mixing point, a reaction chamber and a precipitator are installed. A numerical finite difference method (FDM) is employed to model the RAPH and obtain the accurate temperature distribution of fluid and heat transfer elements. The initial formation temperatures of (NH4)2SO4 and ABS are 200 °C and 170 °C, respectively, according to the flue gas composition in this work. By calculation, this split design of the RAPH is believed to be effective in reducing deposition of ABS.


Sign in / Sign up

Export Citation Format

Share Document