Modeling of an Electromagnetic Vibration Energy Harvester With Motion Magnification

Author(s):  
Zhongjie Li ◽  
Zachary Brindak ◽  
Lei Zuo

This paper presents the modeling and analysis of an electromagnetic harvester for potential applications in large-scale vibration energy harvesting such as from vehicle suspensions or civil structures. The kinematics and dynamics of a motion mechanism and generator are considered, including backlash and friction. In this study, a dynamic model for a rack-pinion type regenerative shock absorber has been derived and analyzed based on differential equations. To understand the influence of the friction and backlash on the system, nonlinear models have been created. Simulations are carried out to study the features of the design. The validation of the models is demonstrated by comparing the simulation results with experimental measurements. Guidelines are given for the design of this type of regenerative shock absorbers.

Author(s):  
Patrick S. Heaney ◽  
Onur Bilgen

A common configuration for a piezoelectric vibration energy harvester is the cantilevered beam with the piezoelectric device located near the beam root to maximize energy transduction. The beam curvature in this configuration is monotonically decreasing from root to tip, so the transduction per unit length of piezoelectric material decreases with increasing patch length. As an alternative to such conventional configuration, this paper proposes a so-called inertial four-point loading for beam-like structures. The effects of support location and tip mass on the beam curvature shapes are analyzed for four-point loaded cases to demonstrate the effect of these configurations on the total strain induced on the piezoelectric patch. These configurations are tested experimentally using several different support locations and compared with results from a baseline cantilevered beam. Performance comparisons of their power ratios are made, which indicate improvement in the transduction per unit strain of the four-point loading cases over the cantilevered configuration. The paper concludes with a discussion of potential applications of the inertial four-point loaded configuration.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 44 ◽  
Author(s):  
Mario Mösch ◽  
Gerhard Fischerauer

Self-adaptive vibration energy harvesting systems vary their resonance frequency automatically to better exploit changing environmental conditions. The energy required for the adjustment is taken from the energy storage of the harvester module. The energy gained by an adjustment step has to exceed the energy expended on it to justify the adjustment. A smart self-adaptive system takes this into account and operates in a manner that maximizes the energy output. This paper presents a theory for the optimal operation of a vibration energy harvester with a passive resonance-frequency adjustment mechanism (one that only requires energy for the adjustment steps proper, but not during the hold phases between the steps). Several vibration scenarios are considered to derive a general guideline. It is shown that there exist conditions under which a narrowing of the adjustment bandwidth improves the system characteristics. The theory is applied to a self-adaptive energy harvesting system based on electromagnetic transduction with narrowband resonators. It is demonstrated that the novel optimum mode of operation increases the energy output by a factor of 3.6.


2017 ◽  
Vol 29 (7) ◽  
pp. 1481-1499 ◽  
Author(s):  
Yu Jia ◽  
Jize Yan ◽  
Sijun Du ◽  
Tao Feng ◽  
Paul Fidler ◽  
...  

The convention within the field of vibration energy harvesting has revolved around designing resonators with natural frequencies that match single fixed frequency sinusoidal input. However, real world vibrations can be random, multi-frequency, broadband and time-varying in nature. Building upon previous work on auto-parametric resonance, this fundamentally different resonant approach can harness vibration from multiple axes and has the potential to achieve higher power density as well as wider frequency bandwidth. This article presents the power response of a packaged auto-parametric VEH prototype (practical operational volume of ∼126 cm−3) towards various real world vibration sources including vibration of a bridge, a compressor motor as well as an automobile. At auto-parametric resonance (driven at 23.5 Hz and 1 g rms), the prototype can output a peak of 78.9 mW and 4.5 Hz of −3dB bandwidth. Furthermore, up to ∼1 mW of average power output was observed from the harvester on the Forth Road Bridge. The harvested electrical energy from various real world sources were used to power up a power conditioning circuit, a wireless sensor mote, a micro-electromechanical system accelerometer and other low-power sensors. This demonstrates the concept of self-sustaining vibration powered wireless sensor systems in real world scenarios, to potentially realise maintenance-free autonomous structural health and condition monitoring.


Author(s):  
S. D. Moss ◽  
L. A. Vandewater ◽  
S. C. Galea

This work reports on the modelling and experimental validation of a bi-axial vibration energy harvesting approach that uses a permanent-magnet/ball-bearing arrangement and a wire-coil transducer. The harvester’s behaviour is modelled using a forced Duffing oscillator, and the primary first order steady state resonant solutions are found using the homotopy analysis method (or HAM). Solutions found are shown to compare well with measured bearing displacements and harvested output power, and are used to predict the wideband frequency response of this type of vibration energy harvester. A prototype harvesting arrangement produced a maximum output power of 12.9 mW from a 12 Hz, 500 milli-g (or 4.9 m/s2) rms excitation.


2016 ◽  
Vol 28 (5) ◽  
pp. 578-594 ◽  
Author(s):  
Sri Vikram Palagummi ◽  
Fuh-Gwo Yuan

This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation mechanism–based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit. The horizontal diamagnetic levitation mechanism comprises three permanent magnets and two diamagnetic plates. Two of the magnets, lifting magnets, are placed co-axially at a distance such that each attracts a centrally located magnet, floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet, and the diamagnetic plate is parametrically studied to quantify their effects on the size, stability of the levitation mechanism, and the resonant frequency of the floating magnet. For vibration energy harvesting using the horizontal diamagnetic levitation mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a volume figure of merit of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at a frequency of 1.9 Hz.


Author(s):  
Auteliano A. Santos ◽  
Matheus V. Lopes ◽  
Vanessa Gonçalves ◽  
Jony J. Eckert ◽  
Thiago S. Martins

Long heavy-haul trains are now a reality, especially for ore transportation. In some railways, compositions of up to 330 wagons are in service, requiring several locomotives. Trains like that travel long distances, sometimes through cities or in uninhabited regions. They are driven by just one driver which must keep the whole train working safely on the track. The wagons don’t have any source of electrical energy to power sensors and to transmit their signals to the locomotive; nor wireless communication. In fact, in some of these railways, there is no internet along with the track out of the cities. One important indicator of the safety of the train is the force between the wagons during the trip, through the shunting. Using strain gauges to measure these forces is a possible solution and ultrasonic stress sensors (UST) is a suitable alternative. UST with Lcr waves requires a low amount of energy and can be employed in rusty and dirty places. However, they also need an energy source. Wind and solar solutions are not always adequate because, unfortunately, there are places where these components have economic value and they can be stolen. A possible source of energy to power the USTs could be the Vibration Energy Harvester (VEH). These simple and not expensive systems can be built in small packs, giving the energy to measure the forces and transmit the data to the locomotive or designated sites along the track. This work aims to evaluate the possibility of using VEH to power USTs to measure the forces between the wagons during the journey. Knowing that the oscillation in the shunting has a very low frequency, the work intent to optimize a multi-beam VEH to be able to capture the highest amount of energy possible, in a very small arrangement, using genetic algorithm. The result shows that VEH is an adequate alternative to power autonomous UST sensors.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Shan Gao ◽  
Hongrui Ao ◽  
Hongyuan Jiang

Abstract Piezoelectric vibration energy harvesting technology has attracted significant attention for its applications in integrated circuits, microelectronic devices, and wireless sensors due to high power density, easy integration, simple configuration, and other outstanding features. Among piezoelectric vibration energy harvesting structures, the cantilevered beam is one of the simplest and most commonly used structures. In this work, a vertically staggered rectangle-through-holes (VS-RTH) cantilevered model is proposed, which focuses on the multi-directional vibration collection. To verify the output performance of the device, this paper employs basic materials and fabrication methods with mathematical modeling. The simulations are conducted through finite element methods to discuss the properties of VS-RTH energy harvester on resonant frequency and output characteristics. Besides, an energy storage circuit is adopted as a collection system. It can achieve a maximum voltage of 4.5 V which is responded to the harmonic vibrating input of 1 N force and 1 m/s2 in a single vibrating direction. Moreover, the power density is 2.596 W/cm3 with a 100 kΩ resistor. It is almost four times better than the output of unidirectional cantilever beam with similar resonant frequency and volume. According to the more functionality in the applications, VS-RTH energy harvester can be used in general vibration acquisition of machines and vehicles. Except for electricity storage, the harvester can potentially employ as a sensor to monitor the diversified physical signals for smooth operation and emergence reports. Looking forward, the VS-RTH harvester renders an effective approach toward decomposing the vibration directions in the environment for further complicating vibration applications.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1446 ◽  
Author(s):  
Hyun Jun Jung ◽  
Saman Nezami ◽  
Soobum Lee

Energy harvesters generate power only when ambient energy is available, and power loss is significant when the harvester does not produce energy and its power management circuit is still turned on. This paper proposes a new high-efficiency power management circuit for intermittent vibration energy harvesting. The proposed circuit is unique in terms of autonomous power supply switch between harvester and storage device (battery), as well as self-start and control of the operation mode (between active and sleep modes). The self-start controller saves power during an inactive period and the impedance matching concept enables maximum power transfer to the storage device. The proposed circuit is prototyped and tested with an intermittent vibration energy harvester. Test results found that the daily energy consumption of the proposed circuit is smaller than that of the resistive matching circuit: 0.75 J less in sleep mode and 0.04 J less in active mode with self-start.


Sign in / Sign up

Export Citation Format

Share Document