Natural Convection in Rectangular Cavity With Nanoparticle Enhanced Ionic Liquids (NEILs)
A systematic natural convection heat transfer experiment has been carried out of nanoparticle enhanced ionic liquids (NEILs) in rectangular enclosures (lengthxwidthxheight, 50×50×50mm and 50×50×75mm) heated from below condition. In the present experiment NEIL was made of N-butyl-N-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl} imide, ([C4mpyrr][NTf2]) ionic liquid with 0.5% (weight%) Al2O3 nanoparticles. In addition to characterize the natural convection behavior of NEIL, thermophysical properties such as thermal conductivity, heat capacity, and viscosity were also measured. The result shows that the thermal conductivity of NEIL enhanced ∼3% from the base ionic liquid (IL), heat capacity enhanced ∼12% over the measured temperature range. The natural convection experimental result shows consistent for two different enclosures based on the degrading natural convection heat transfer rate over the measured Rayleigh number range. Possible reasons of the degradation of natural convection heat transfer may be the relative change of the thermophysical properties of NEIL compare to the base ionic liquid.