Applicability of Heat Mirrors in Reducing Thermal Losses in Concentrating Solar Collectors

2016 ◽  
Author(s):  
Prashant Mahendra ◽  
Vikrant Khullar ◽  
Madhup Mittal

Flux distribution around the parabolic trough receiver being typically non-uniform, only a certain portion of the receiver circumference receives the concentrated solar irradiance. However, radiative and convective losses occur across the entire receiver circumference. This paper attempts to introduce the idea employing transparent heat mirror to effectively reduce the heat loss area and thus improve the thermal efficiency of the solar collector. Transparent heat mirror essentially has high transmissivity in the solar irradiance wavelength band and high reflectivity in the mid-infrared region thus it allows the solar irradiance to pass through but reflects the infrared radiation back to the solar selective metal tube. Practically, this could be realized if certain portion of the conventional low iron glass envelope is coated with Sn-In2O3 so that its acts as a heat mirror. In the present study, a parabolic receiver design employing the aforesaid concept has been proposed. Detailed heat transfer model has been formulated. The results of the model were compared with the experimental results of conventional concentrating parabolic trough solar collectors in the literature. It was observed that while maintaining the same external conditions (such as ambient/initial temperatures, wind speed, solar insolation, flow rate, concentration ratio etc.) the heat mirror-based parabolic trough concentrating solar collector has about 3–12% higher thermal efficiency as compared to the conventional parabolic solar collector. Furthermore, steady state heat transfer analysis reveals that depending on the solar flux distribution there is an optimum circumferential angle (θ = θoptimum, where θ is the heat mirror circumferential angle) up to which the glass envelope should be coated with Sn-In2O3. For angles higher than the optimum angle, the collector efficiency tends to decrease owing to increase in optical losses.

Author(s):  
Vikrant Khullar ◽  
Prashant Mahendra ◽  
Madhup Mittal

Abstract In the present work, a novel parabolic trough receiver design has been proposed. The proposed design is similar to the conventional receiver design except for the envelope and the annulus part. Here, a certain portion of the conventional glass envelope is coated with Sn-In2O3 and also Sn-In2O3 coated glass baffles are provided in the annulus part to reduce the radiative losses. The optical properties of the coated glass are such that it allows most of the solar irradiance to pass through, but reflects the emitted long wavelength radiations back to the absorber tube. Sn-In2O3 coated glass is referred to as “transparent heat mirror.” Thus, effectively reducing the heat loss area and improving the thermal efficiency of the solar collector. A detailed one-dimensional steady-state heat transfer model has been developed to predict the performance of the proposed receiver design. It was observed that while maintaining the same external conditions (such as ambient/initial temperatures, wind speed, solar insolation, flow rate, and concentration ratio), the heat mirror-based parabolic trough receiver design has about 3–5% higher thermal efficiency as compared to the conventional receiver design. Furthermore, the heat transfer analysis reveals that depending on the spatial incident solar flux distribution, there is an optimum circumferential angle (θ = θoptimum, where θ is the heat mirror circumferential angle) up to which the glass envelope should be coated with Sn-In2O3. For angles higher than the optimum angle, the collector efficiency tends to decrease owing to increase in optical losses.


1987 ◽  
Vol 109 (4) ◽  
pp. 289-297 ◽  
Author(s):  
D. Suresh ◽  
J. O’Gallagher ◽  
R. Winston

Some practical questions associated with the use of hyperboloidal “trumpet” shaped terminal concentrators for use in solar thermal applications are addressed. Computer ray-trace calculations show that the flux distribution is strongly peaked over a small neck area at the exit of the trumpet, which will be subjected to a substantial thermal load. A quasi-transient heat transfer model has been developed to analyze the thermal behavior of passively cooled trumpets. The thermal analysis shows that simple techniques exist such that one can design passive secondary trumpets which will remain below safe temperature limits under normal operation for many applications. The wall thickness and its variation along the body of the bell-shaped shell from the exit are found to play an important role in controlling the temperature at all flux levels. As a check on the validity of the model, a set of electrical simulation experiments was conducted and excellent agreement was found.


2020 ◽  
Vol 13 (3) ◽  
pp. 206-221
Author(s):  
Vijayan Gopalsamy ◽  
Karunakaran Rajasekaran ◽  
Logesh Kamaraj ◽  
Siva Sivasaravanan ◽  
Metin Kok

Background: Aqueous-alumina nanofluid was prepared using magnetic stirrer and ultrasonication process. Then, the prepared nanofluid was subjected to flow through the unshielded receiver of the parabolic trough solar collector to investigate the performance of the nanofluid and the effects of the dimensionless parameter were determined. Methods: The experimental work has been divided into two sections. First, the nanofluid was prepared and tested for its morphology, dimensions, and sedimentation using X-Ray Diffraction and Raman shift method. Then, the nanofluids of various concentrations from 0 to 4.0% are used as heat transfer fluid in unshielded type collector. Finally, the effect of the dimensionless parameter on the performance was determined. Results: For the whole test period, depending upon the bulk mean temperature, the dimensionless parameters such as Re and Nu varied from 1098 to 4552 & 19.30 to 46.40 for air and 2150 to 7551 & 11.11 to 48.54 for nanofluid. The enhancement of thermal efficiency found for 0% and 4.0% nanoparticle concentrations was 32.84% for the mass flow rate of 0.02 kg/s and 13.26% for the mass flow rate of 0.06 kg/s. Conclusion: Re and Nu of air depend on air velocity and ambient temperature. Re increased with the mass flow rate and decreased with concentration. Heat loss occurred by convection mode of heat transfer. Heat transfer coefficient and global efficiency increased with increased mass flow rate and volume fraction. The thermal efficiency of both 0% and 4.0% concentrations became equal for increased mass flow rate. It has been proven that at high mass flow rates, the time available to absorb the heat energy from the receiver is insufficient.


Energy ◽  
2018 ◽  
Vol 142 ◽  
pp. 920-931 ◽  
Author(s):  
Man Fan ◽  
Hongbo Liang ◽  
Shijun You ◽  
Huan Zhang ◽  
Wandong Zheng ◽  
...  

2014 ◽  
Vol 57 ◽  
pp. 401-410 ◽  
Author(s):  
Antônio Marcos de Oliveira Siqueira ◽  
Paulo Eduardo Neves Gomes ◽  
Larissa Torrezani ◽  
Eliene Oliveira Lucas ◽  
Geraldo Magela da Cruz Pereira

2019 ◽  
Vol 196 ◽  
pp. 807-820 ◽  
Author(s):  
Rafael Aguilar ◽  
Loreto Valenzuela ◽  
Antonio L. Avila-Marin ◽  
Pedro L. Garcia-Ybarra

Sign in / Sign up

Export Citation Format

Share Document