Comparative Analysis of Different In Row Cooler Management Configurations in a Hybrid Cooling Data Center

Author(s):  
Tianyi Gao ◽  
Bahgat G. Sammakia ◽  
James Geer ◽  
Bruce Murray ◽  
Russell Tipton ◽  
...  

The heat dissipated by electronic equipment inside data centers is increasing at a rapid rate due to the increasing of performance requirement and package density. This ever increasing power leads to critical challenges of thermal management for these high power density data centers. Energy consumption is also a key issue for high density data centers. Roughly 1.5% of all U.S. electricity consumption in the year 2006 was related to data centers, while that number increased to 2% by the year 2010. In 2013, U.S. data centers consumed approximately 91 billion kilowatt-hours of electricity. This amount of the electricity equals the annual output of 34 500-megawatt coal-fired power plants [1]. Cooling systems constitute a significant portion of the energy consumption of data centers, being approximately 25%∼35% of the total energy usage. Therefore, there is a large potential to save energy by optimizing current existing cooling systems and investigating new cooling technologies, and, at the same time, improving the overall cooling capacity and efficiency. This paper describes and investigates a hybrid cooling technology which utilizes in row coolers in existing raised floor air cooled data centers. The in row cooler functions as a liquid-to-air heat exchanger. In addition to the traditional raised floor cold aisle-hot aisle arrangements, the in row cooler is installed between the IT equipment to enable delivering the liquid coolant medium closer to the IT equipment. The in row coolers intake the hot air from the hot aisle, condition it, and supply the chilled air to the cold aisle. Thus, by extracting a large portion of the heat more directly into the cooling liquid through the in row coolers compared with the perimeter CRAH unit, the overall cooling performance and efficiency can potentially be improved. CFD models for an in row cooler and a representative data center room are developed. Experimentally characterized performance data are used to calibrate and validate the models. The models are then used to conduct a detailed computational analysis to assess the effectiveness of different arrangement configurations of in row cooler units in two rows of racks along one cold aisle. The detailed performance of the entire cold aisle is characterized using the rack inlet air temperature and a temperature nonuniformity factor. The impact of CRAH location and room layout are also investigated. This study is based on a practical problem and the corresponding results and analysis provide basic installation and design guidelines for future equipment upgrading in certain parts of the data center.

Author(s):  
Tianyi Gao ◽  
Emad Samadiani ◽  
Bahgat Sammakia ◽  
Roger Schmidt

Data centers consume a considerable amount of energy which is estimated to be about 2 percent of the total electrical energy consumed in the US, and their power consumption continues to increase every year. It is also estimated that roughly 30–40 percent of the total energy used in a data center is due to the thermal management systems. So, there is a strong need for better cooling methods which could improve the cooling capacity and also reduce energy consumption for high density data centers. In this regard, liquid cooling systems have been utilized to deal with demanding cooling and energy efficiency requirements in high density data centers. In this paper, a hybrid cooling system in data centers is investigated. In addition to traditional raised floor, cold aisle-hot aisle configuration, a liquid-air hybrid cooling system consisting of rear door heat exchangers attached to the back of racks is considered. The room is analyzed numerically using two CFD based simulation approaches for modeling rear door heat exchangers that are introduced in this study. The presented model is used in the second section of the paper to compare the hybrid cooling system with traditional air cooling systems. Several case studies are taken into account including the power increases in the racks and CRAC unit failure scenarios. A comparison is made between the hybrid cooling room and a purely air cooled room based on the rack inlet temperatures. Also in this study, total energy consumption by the cooling equipment in both air-cooled and hybrid data centers are modeled and compared with each other for different scenarios. The results show that under some circumstances the hybrid cooling could be an alternative to meet the ASHRAE recommended inlet air temperatures, while at the same time it reduces the cooling energy consumption in high density data centers.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat G. Sammakia ◽  
Russell Tipton ◽  
Mark Seymour

Cooling power constitutes a large portion of the total electrical power consumption in data centers. Approximately 25%∼40% of the electricity used within a production data center is consumed by the cooling system. Improving the cooling energy efficiency has attracted a great deal of research attention. Many strategies have been proposed for cutting the data center energy costs. One of the effective strategies for increasing the cooling efficiency is using dynamic thermal management. Another effective strategy is placing cooling devices (heat exchangers) closer to the source of heat. This is the basic design principle of many hybrid cooling systems and liquid cooling systems for data centers. Dynamic thermal management of data centers is a huge challenge, due to the fact that data centers are operated under complex dynamic conditions, even during normal operating conditions. In addition, hybrid cooling systems for data centers introduce additional localized cooling devices, such as in row cooling units and overhead coolers, which significantly increase the complexity of dynamic thermal management. Therefore, it is of paramount importance to characterize the dynamic responses of data centers under variations from different cooling units, such as cooling air flow rate variations. In this study, a detailed computational analysis of an in row cooler based hybrid cooled data center is conducted using a commercially available computational fluid dynamics (CFD) code. A representative CFD model for a raised floor data center with cold aisle-hot aisle arrangement fashion is developed. The hybrid cooling system is designed using perimeter CRAH units and localized in row cooling units. The CRAH unit supplies centralized cooling air to the under floor plenum, and the cooling air enters the cold aisle through perforated tiles. The in row cooling unit is located on the raised floor between the server racks. It supplies the cooling air directly to the cold aisle, and intakes hot air from the back of the racks (hot aisle). Therefore, two different cooling air sources are supplied to the cold aisle, but the ways they are delivered to the cold aisle are different. Several modeling cases are designed to study the transient effects of variations in the flow rates of the two cooling air sources. The server power and the cooling air flow variation combination scenarios are also modeled and studied. The detailed impacts of each modeling case on the rack inlet air temperature and cold aisle air flow distribution are studied. The results presented in this work provide an understanding of the effects of air flow variations on the thermal performance of data centers. The results and corresponding analysis is used for improving the running efficiency of this type of raised floor hybrid data centers using CRAH and IRC units.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1722
Author(s):  
Seyyed Danial Nazemi ◽  
Esmat Zaidan ◽  
Mohsen A. Jafari

Cooling systems play a key role in maintaining human comfort inside buildings. The key challenges that are facing conventional cooling systems are the rapid growth of total cooling energy and annual electricity consumption in commercial buildings. This is even more significant in countries with an arid climate, where the cooling systems are typically working 80% of the year. Thus, there has been growing interest in developing smart control models to assign optimal cooling setpoints in recent years. In the present work, we propose an occupancy-based control model that is based on a non-linear optimization algorithm to efficiently reduce energy consumption and costs. The model utilizes a Monte-Carlo method to determine the approximate occupancy schedule for building thermal zones. We compare our proposed model to three different strategies, namely: always-on thermostat, schedule-based model, and a rule-based occupancy-driven model. Unlike these three rule-based algorithms, the proposed optimization approach is a white-box model that considers the thermodynamic relationships in the cooling system to find the optimal cooling setpoints. For comparison, different case studies in five cities around the world were investigated. Our findings illustrate that the proposed optimization algorithm is able to noticeably reduce the cooling energy consumption of the buildings. Significantly, in cities that were located in severe hot regions, such as Doha and Phoenix, cooling energy consumption can be reduced by 14.71% and 15.19%, respectively.


Author(s):  
Tianyi Gao ◽  
Emad Samadiani ◽  
Roger Schmidt ◽  
Bahgat Sammakia

Thermal management of high power data centers poses challenges due to the high operational cost which is made worse due to the many inefficiencies that arise in them. Additional challenges arise due to the dynamic behaviors that occur during normal operation, and also during emergencies such as power outages or failure of some or all of the cooling equipment. Water and hybrid air plus water cooled data centers are an alternate cooling solution combining liquid cooling systems, such as rear door heat exchangers located within the racks themselves, in addition to the traditional raised floor cold aisle air cooling system. Such a solution may be used when some of the equipment in a data center is upgraded to higher end and higher power equipment which may not be manageable with the existing air cooling system. For a data center with a hybrid cooling system, the cold air supply and the cold water supply should increase in case of an emergency, such as a CRAC (Computer Room Air Conditioner) units’ failure. In this paper, a detailed computational study is conducted to investigate the dynamic response of the impact of a CRAC failure on both water side and air side in a representative hybrid cooling room. The room studied is an air cooled data center using the common cold aisle approach, with rear door heat exchangers installed on all of the racks. CRAC failure is investigated in a hybrid cooling room. The variation and fluctuation in an average rack inlet temperature, and inlet temperatures at different detail locations are presented in plots, showing the dynamic performance of a hybrid cooling data center subjected to the different CRAC failure scenarios. Different response time studies are also presented in this paper.


Author(s):  
Veerendra Mulay ◽  
Saket Karajgikar ◽  
Dereje Agonafer ◽  
Roger Schmidt ◽  
Madshusudan Iyengar ◽  
...  

The power trend for server systems continues to grow thereby making thermal management of data centers a very challenging task. Although various configurations exist, the raised floor plenum with Computer Room Air Conditioners (CRACs) providing cold air is a popular operating strategy. In prior work, numerous data center layouts employing raised floor plenum and the impact of design parameters such as plenum depth, ceiling height, cold isle location, tile openings and others on thermal performance of data center were presented. The air cooling of data center however, may not address the situation where more energy is expended in cooling infrastructure than the thermal load of data center. Revised power trend projections by ASHRAE TC 9.9 predict heat loads as high as 5000W per square feet of compute servers’ equipment footprint by year 2010. These trend charts also indicate that heat load per product footprint has doubled for storage servers during 2000–2004. For the same period, heat load per product footprint for compute servers has tripled. Amongst the systems that are currently available and being shipped, many racks exceed 20kW. Such high heat loads have raised concerns over air cooling limits of data centers similar to that of microprocessors. A hybrid cooling strategy that incorporates liquid cooling along with air cooling can be very efficient in such situations. The impact of such an operating strategy on thermal management of data center is discussed in this paper. A representative data center is modeled using commercially available CFD code. The change in rack temperature gradients, recirculation cells and CRAC demand due to use of hybrid cooling is presented in a detailed parametric study. It is shown that the hybrid cooling strategy improves the cooling of data center which may enable full population of rack and better management of system infrastructure.


2021 ◽  
Vol 12 (1) ◽  
pp. 74-83
Author(s):  
Manjunatha S. ◽  
Suresh L.

Data center is a cost-effective infrastructure for storing large volumes of data and hosting large-scale service applications. Cloud computing service providers are rapidly deploying data centers across the world with a huge number of servers and switches. These data centers consume significant amounts of energy, contributing to high operational costs. Thus, optimizing the energy consumption of servers and networks in data centers can reduce operational costs. In a data center, power consumption is mainly due to servers, networking devices, and cooling systems, and an effective energy-saving strategy is to consolidate the computation and communication into a smaller number of servers and network devices and then power off as many unneeded servers and network devices as possible.


Author(s):  
Burak Kantarci ◽  
Hussein T. Mouftah

Cloud computing aims to migrate IT services to distant data centers in order to reduce the dependency of the services on the limited local resources. Cloud computing provides access to distant computing resources via Web services while the end user is not aware of how the IT infrastructure is managed. Besides the novelties and advantages of cloud computing, deployment of a large number of servers and data centers introduces the challenge of high energy consumption. Additionally, transportation of IT services over the Internet backbone accumulates the energy consumption problem of the backbone infrastructure. In this chapter, the authors cover energy-efficient cloud computing studies in the data center involving various aspects such as: reduction of processing, storage, and data center network-related power consumption. They first provide a brief overview of the existing approaches on cool data centers that can be mainly grouped as studies on virtualization techniques, energy-efficient data center network design schemes, and studies that monitor the data center thermal activity by Wireless Sensor Networks (WSNs). The authors also present solutions that aim to reduce energy consumption in data centers by considering the communications aspects over the backbone of large-scale cloud systems.


Facilities ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Patrick T.I. Lam ◽  
Daniel Lai ◽  
Chi-Kin Leung ◽  
Wenjing Yang

Purpose As smart cities flourish amidst rapid urbanization and information and communication technology development, the demand for building more and more data centers is rising. This paper aims to examine the principal issues and considerations of data center facilities from the cost and benefit dimensions, with an aim to illustrate the approaches for maximizing the net benefits and remain “green.” Design/methodology/approach A comprehensive literature review informs the costs and benefits of data center facilities, and through a case study of a developer in Hong Kong, the significance of real estate costs is demonstrated. Findings Major corporations, establishments and governments need data centers as a mission critical facility to enable countless electronic transactions to take place any minute of the day. Their functional importance ranges from health, transport, payment, etc., all the way to entertainment activities. Some enterprises own them, whilst others use data center services on a co-location basis, in which case data centers are regarded as an investment asset. Real estate costs affect their success to a great extent, as in the case of a metropolitan where land cost forms a substantial part of the overall development cost for data centers. Research limitations/implications As the financial information of data center projects are highly sensitive due to the competitive status of the industry, a full set of numerical data is not available. Instead, the principles for a typical framework are established. Originality/value Data centers are very energy intensive, and their construction is usually fast tracked costing much to build, not to mention the high-value equipment contents housed therein. Their site locations need careful selection due to stability and security concerns. As an essential business continuity tool, the return on investment is a complex consideration, but certainly the potential loss caused by any disruption would be a huge amount. The life cycle cost and benefit considerations are revealed for this type of mission-critical facilities. Externalities are expounded, with emphasis on sustainable issues. The impact of land shortage for data center development is also demonstrated through the case of Hong Kong.


Author(s):  
N. Fumo ◽  
V. Bortone ◽  
J. C. Zambrano

Data centers are facilities that primarily contain electronic equipment used for data processing, data storage, and communications networking. Regardless of their use and configuration, most data centers are more energy intensive than other buildings. The continuous operation of Information Technology equipment and power delivery systems generates a significant amount of heat that must be removed from the data center for the electronic equipment to operate properly. Since data centers spend up to half their energy on cooling, cooling systems becomes a key factor for energy consumption reduction strategies and alternatives in data centers. This paper presents a theoretical analysis of an absorption chiller driven by solar thermal energy as cooling plant alternative for data centers. Source primary energy consumption is used to compare the performance of different solar cooling plants with a standard cooling plant. The solar cooling plants correspond to different combinations of solar collector arrays and thermal storage tank, with a boiler as source of energy to ensure continuous operation of the absorption chiller. The standard cooling plant uses an electric chiller. Results suggest that the solar cooling plant with flat-plate solar collectors is a better option over the solar cooling plant with evacuated-tube solar collectors. However, although solar cooling plants can decrease the primary energy consumption when compared with the standard cooling plant, the net present value of the cost to install and operate the solar cooling plants are higher than the one for the standard cooling plant.


Sign in / Sign up

Export Citation Format

Share Document