Implementing a Geohazard Integrity Management Program: Statistics and Lessons Learned Over 15 Years

Author(s):  
Alex J. Baumgard ◽  
Tara L. Coultish ◽  
Gerry W. Ferris

Over the last 15 years, BGC Engineering Inc. has developed and implemented a geohazards Integrity Management Program (IMP) with 12 major pipeline operators (consisting of gas and oil pipelines and of both gathering and transmission systems). Over this time, the program has been applied to the assessment of approximately 13,500 individual hydrotechnical and geotechnical geohazard sites spanning approximately 63,000 km of operating pipelines in Canada and the USA. Hydrotechnical (watercourse) and geotechnical (slope) hazards are the primary types of geohazards that have directly contributed to pipeline failures in Canada. As with all IMPs, the core objectives of a geohazard management system are to ensure a proactive approach that is repeatable and defensible. In order to meet these objectives, the program allows for varying levels of intensity of inspection and a recommended timescale for completion of actions to manage the identified geohazards in accordance with the degree of hazard that the site poses to the pipeline. In this way, the sites are managed in a proactive manner while remaining flexible to accommodate the most current conditions at each site. This paper will provide a background to the key components of the program related specifically to existing operating pipeline systems, present pertinent statistics on the occurrence of various types of geohazards based on the large dataset of inspections, and discuss some of the lessons learned in the form of program results and program challenges from implementing a geohazard integrity management system for a dozen operators with different ages of systems, complexity of pipeline networks, and in varied geographic settings.

Author(s):  
Lawrence Ator ◽  
Minh Ho

The National Energy Board of Canada (NEB), a federal energy regulator, has implemented a management system audit program as a tool to verify compliance with its predominantly goal-oriented Onshore Pipeline Regulations, 1999 (OPR) [1]. The OPR allow individual companies to choose the most effective way to manage their pipeline systems. The audit program is based on expected elements that the NEB believes are necessary to meet the goals of the OPR. This paper will explain why these audits and expected elements are necessary and describe how goal-oriented regulations will enhance pipeline safety. The audits conducted to date have identified several challenges that the NEB and pipeline companies face in pursuit of the goal of safe pipelines; these will be described and possible solutions will be proposed. The overall objective of the paper is to explain the benefits of using a management system approach to direct a company’s pipeline integrity management program and what is required of companies to meet the expectations of the NEB.


Author(s):  
Len LeBlanc ◽  
Walter Kresic ◽  
Sean Keane ◽  
John Munro

This paper describes the integrity management framework utilized within the Enbridge Liquids Pipelines Integrity Management Program. The role of the framework is to provide the high-level structure used by the company to prepare and demonstrate integrity safety decisions relative to mainline pipelines, and facility piping segments where applicable. The scope is directed to corrosion, cracking, and deformation threats and all variants within those broad categories. The basis for the framework centers on the use of a safety case to provide evidence that the risks affecting the system have been effectively mitigated. A ‘safety case’, for the purposes of this methodology is defined as a structured argument demonstrating that the evidence is sufficient to show that the system is safe.[1] The decision model brings together the aspects of data integration and determination of maintenance timing; execution of prevention, monitoring, and mitigation; confirmation that the execution has met reliability targets; application of additional steps if targets are not met; and then the collation of the results into an engineering assessment of the program effectiveness (safety case). Once the program is complete, continuous improvement is built into the next program through the incorporation of research and development solutions, lessons learned, and improvements to processes. On the basis of a wide range of experiences, investigations and research, it was concluded that there are combinations of monitoring and mitigation methods required in an integrity program to effectively manage integrity threats. A safety case approach ultimately provides the structure for measuring the effectiveness of integrity monitoring and mitigation efforts, and the methodology to assess whether a pipeline is sufficiently safe with targets for continuous improvement. Hence, the need for the safety case is to provide transparent, quantitative integrity program performance results which are continually improved upon through ongoing revalidations and improvement to the methods utilized. This enables risk reduction, better stakeholder awareness, focused innovation, opportunities for industry information sharing along with other benefits.


Author(s):  
Gerald Ferris ◽  
Sarah Newton ◽  
Minh Ho

Abstract Plains Midstream Canada (PMC) completes a watercourse crossing program as part of its overall integrity management program. The approximately 9,900 kilometers of operating and discontinued pipelines are evaluated within the watercourse crossing program. The pipelines are located throughout the Canadian Provinces of Alberta, Saskatchewan, Manitoba and Ontario. The terrain traversed ranges from relatively steep near the Rocky Mountains to extremely flat in northern Alberta and Southern Ontario. Since 2008, PMC’s systematic watercourse crossing program has evolved and now consists of approximately 5,000 individual watercourse crossings. The bankfull width of the watercourses ranges from less than 1 m for intermittent streams to more than 700 m at major rivers. The watercourse crossing program is subjected to a continuous improvement process, with a focus on key learnings from pipeline failures, free spans and exposure. This paper describes the results from the program over the last 10 years and highlights program improvements. In addition, data from a failure and three free spans on the pipelines now owned by PMC, but where the exposure, free span or failure occurred prior to PMC purchasing the pipelines were added to expand the available data for the key learnings.


Author(s):  
Hugo García ◽  
Carlos Nieves ◽  
Juan Diego Colonia

Oil pipelines systems for hydrocarbons transportation are linear projects that can reach great lengths. For this reason, theirs paths may cross different geological formations, soil types, navigable or torrential waters; and they may face geotechnical and hydrological instability problems such as creeping slopes, geological faults, landslides, scour and differential settling which causes different relative movements between the soil and the pipeline. The OCENSA (Oleoducto Central S.A) 30″ and 36″ diameter system was built in 1997 to transport crude oil from the eastern foothills of the Andes to the Caribbean Coast along some 830 km of the Eastern Andes mountains range and the spurs of the central Andes mountains range of Colombia: it was a major challenge to secure the integrity of the pipeline in the face of natural events.


Author(s):  
Honglong Zheng ◽  
Muyang Ai ◽  
Lijian Zhou ◽  
Mingfei Li ◽  
Ting Wang ◽  
...  

As a preventative management mode, integrity management which is significantly effective is now applicable in modern industry. Based on the successful application of integrity management for the pipeline, managers expect an extension of the integrity management program for the oil and gas stations such as pumping stations, so as to make the best arrangement of resources and guarantee the safety of station facilities. The differences between station integrity management system in China and abroad are analyzed. It is claimed that the oil and gas station integrity management is more difficult and complicated in China. An integrity management program is developed for the oil and gas stations in China. The authors summarily introduce the station integrity management framework, and determine the processes and elements of management. For the main parts of the stations are plenty of facilities, the authors attempt to carry out the management on each category of facilities in particular. According to the characteristics and working status, field facilities can be classified into three categories: static facilities, dynamic facilities, and electrical instruments. For all these facilities, integrity management approach consists of five steps: data collection, risk assessment, integrity assessment, repair & maintenance, and performance evaluation. Station integrity management system comprises five aspects: system documents, standards & specifications, supporting technologies, management platforms and applications. This paper should be considered as a reference for the oil and gas station integrity managers in the future.


Author(s):  
Jeffrey Wiese ◽  
Linda Daugherty

This paper discusses the original motivations and objectives of the Integrity Management Program (IMP), the lessons learned from the first decade of implementing IMP, the drivers for improving and expanding IMP (“IMP 2.0”), actions that the Department of Transportation’s Pipeline and Hazardous Material Safety Administration (PHMSA) is already taking under the IMP 2.0 umbrella, as well as the future direction the Office of Pipeline Safety (OPS) expects IMP 2.0 to take in the next few years.


Author(s):  
M. Robb Isaac ◽  
Saleh Al-Sulaiman ◽  
Monty R. Martin ◽  
Sandeep Sharma

In early 2005, Kuwait Oil Company (KOC) initiated a Total Pipeline Integrity Management System (TPIMS) implementation in order to carry out a major integrity assessment of its operating facilities, equipment, buried plant piping and pipeline network and to establish a continuing integrity management program. KOC Transit System is a complex infrastructure consisting of over three hundred pipelines, thousands of wellhead flow lines, and consumer and offshore lines for which there was a significant loss of data when the facilities were destroyed during a military invasion in 1990. An initial pipeline system assessment identified issues and actions regarding condition of the pipelines, corridors, requirements on in-line inspection (ILI), documentation, RISK assessment, status of international code compliance, and overall state of the system. Following recommendations from that initial assessment led to the development of a long term strategy; the execution of which required the implementation of a comprehensive integrity management program. This case study discusses the results obtained after five years of implementation of TPIMS at KOC. It will demonstrate some of the complex components involved in managing the integrity of the Transit System that have been made possible through the implementation of the system. The general concept and structure of TPIMS will be described, and how it deals with the complexity of the KOC pipeline system. The system made it possible to integrate and manage data from various sources, by conducting integrity assessment using ILI, Direct Assessment and hydrostatic testing, as well as structure a comprehensive RISK & Decision Support mechanism. This is one of the world’s first implementations of this magnitude which encompasses such a wide range of services and variables; all being managed in a single environment and utilized by a multitude of users in different areas at KOC. The biggest challenge in a project of this scope is data management. Examples will be shown of the integration structure to illustrate the benefits of using a single comprehensive and versatile platform to manage system requirements; ultimately providing system reliability and improving overall operational efficiency.


Author(s):  
Jeff Sutherland ◽  
Stephan Tappert ◽  
Richard Kania ◽  
Karlheinz Kashammer ◽  
Jim Marr ◽  
...  

Over the past three years there has been increasing industry interest and profile regarding the role and pipeline integrity management potential of EMAT crack inspection technology in the Oil & Gas pipeline industry. This paper outlines the stages and results of the effective collaboration of a major pipeline operator and a service company to advance the true predictive performance of the EMATScan Gen III crack inspection technology. The paper will also summarize and provide examples of lessons-learned from this collaboration across all stages of EMAT based SCC integrity management program. The paper will similarly outline ongoing work in progress regarding the assessment of the ILI data relative to hydro-testing equivalency, detection of injurious defects and the related analysis and reporting improvements made over the past three years.


Author(s):  
Colin Scott

Cracks in close proximity may interact and lead to leaks or ruptures at pressures well below the predicted failure pressures of the individual cracks. Several industry organizations and standards, including CEPA, ASME, API, and British Standards provide guidance on the treatment of potentially interacting cracks. This guidance tends to be very conservative. This paper is a study of crack interaction, including a discussion of industry guidance, a critical review of failure pressure models, and a review of results of laboratory hydro-testing of pipe sections containing either in-service flaws or simulated flaws. In some cases the industry guidance and current failure pressure models provide inconsistent predictions, and this leads to uncertainty in the assessments used in routine crack management programs. The results of the hydro-testing are discussed in the context of both types of predictions. Understanding and predicting these interactions is important in maintaining an effective and efficient crack management program. The paper is aimed at engineers involved in integrity assessments and integrity management system process improvement.


Author(s):  
Reena Sahney ◽  
Mike Reed ◽  
Darren Skibinsky

The Canadian Energy Pipeline Association (CEPA) is a voluntary, non-profit industry association representing major Canadian transmission pipeline companies. With the advent of changes in both CSA Z6621 as well as the National Energy Board Onshore Pipeline Regulations (OPR)2, the membership determined a Recommended Practice regarding a Management Systems Approach for Facilities Integrity was needed. As such, the Pipeline Integrity Working Group (PIWG) within CEPA formed a task group to support the initiative. The outlined approach was intended to have two main philosophical underpinnings: it must comprehensively support safe pipeline system operations and it must provide a practical mechanism for implementing a management systems approach for Facilities Iintegrity. The main challenge in developing a framework for a Facilities Integrity Management System lies in the broad range of equipment and system types that the management system must encompass. That is, equipment, in the context of Facilities Integrity Management, must encompass not only station equipment (such as rotating equipment, valves, meters etc.,) but also categories such as high pressure station piping and fuel lines. Further, there was the recognition that Operators already have an array of tools, processes and techniques in place to manage their various equipment and systems. In light of these observations, the Recommended Practice describes a framework that uses major equipment types as a key differentiator. This is an approach that can be easily aligned with existing corporate computerized maintenance management systems (CMMS) such as SAP™ or Maximo™. Once the equipment categorization has been established, the Recommended Practice then provides guidance regarding the specific requirements that should be addressed for each equipment category based on the framework in CSA Z662-11 Annex N. Specific suggestions are provided in the areas of: alignment with corporate goals and objectives, scope, definitions, performance metrics, risk assessments, competency of personnel, change management as well as documentation. The approach also maximizes the opportunity to leverage existing systems and processes to the extent possible. Overall the Recommended Practice should provide operators with a practical way to achieve a greater degree of rigor and alignment of facilities integrity management while ensuring detailed study and analysis is focused in the most appropriate areas.


Sign in / Sign up

Export Citation Format

Share Document