Effect of Notch Type in Drop-Weight Tear Test Specimen on Crack Propagation and Arrest Behavior

Author(s):  
Satoshi Igi ◽  
Toshihiko Amano ◽  
Takahiro Sakimoto ◽  
Yasuhiro Shinohara ◽  
Tetsuya Tagawa

The drop-weight tear test (DWTT) has been widely used to evaluate the resistance of linepipe steels against brittle fracture propagation. However, in the recent years there is an ambiguity in its evaluation if inverse fracture appears on the specimen fracture surfaces. Although cause of the inverse fracture is not fully understood, compressive pre-straining near the impact hammer and existing tiny split have been discussed as a possible cause. In this paper, machined notch in brittle weld DWTT for X65 was performed and compared with various notch types of DWTTs such as conventional DWTT specimen with a pressed notch (PN), a chevron notch (CN) and a static pre-cracked (SPC). The fracture appearances were compared with different strength X65 - X80 grades linepipes and with different initial notch types. The frequency of the inverse fracture appeared in these DWTTs were different in each material and each specimen types, but there were no cases where the inverse fracture did not occurs. The purpose of DWTT is to evaluate the brittle crack arrestability of the material in a pressurized linepipe. A large scale brittle crack arrest test, so called West Jeferson test is generally used to reproduce crack propagation and arrest behavior in an actual pipeline material. A middle scale test so called Crack Arrest Temperature (CAT) test was also proposed to check the shear area fraction measured in DWTT with API rating with that the local shear lip thickness fraction in those tests. CAT test can well reproduce crack propagation and arrest behavior under the condition of brittle crack initiation from the initial notch.

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Tetsuya Tagawa ◽  
Toshihiko Amano ◽  
Takashi Hiraide ◽  
Takahiro Sakimoto ◽  
Satoshi Igi ◽  
...  

The drop weight tear test (DWTT) has been widely used to evaluate the resistance of linepipe steels against brittle fracture propagation. Although there is an ambiguity in the evaluation of DWTT results if inverse fracture appears on the fracture surfaces, the cause of inverse fracture is not yet fully understood. In the present work, DWTTs were performed with X65, X70, and X80 steel linepipes. In addition to the conventional DWTT specimen with a pressed notch (PN), PN specimens with a back slot (BS) and specimens with a chevron notch (CN) or static precrack (SPC) were also examined, and the fracture appearances in different strengths and different initial notch types were compared. Although the frequency of inverse fracture in these DWTTs was different with each material and each specimen type, there was no material or specimen type that was entirely free from inverse fracture. The purpose of the DWTT is to evaluate the brittle crack arrestability of the material in a pressurized linepipe. Therefore, the DWTT results should be examined with a running brittle crack arrest (BCA) test. A large-scale BCA test with temperature gradient was also performed with the X65 mother plate, and the shear area fraction measured in the DWTT fracture surface was compared with the local shear lip thickness fraction in the BCA test. Based on the results, the count of inverse fracture in the DWTT was discussed in comparison with the long BCA behavior in the BCA test.


Author(s):  
Tetsuya Tagawa ◽  
Taishi Fujishiro ◽  
Toshihiko Amano ◽  
Shuji Aihara ◽  
Satoshi Igi

The drop-weight tear test (DWTT) has been widely used to evaluate the resistance of linepipe steels against long brittle fracture propagation. However, there is an ambiguity in its evaluation if the inverse fracture appears (100% shear area prior to cleavage fracture from the notch) on the DWTT fracture surfaces. Although cause of the inverse fracture is not fully understood, compressive pre-straining near the impact hammer has been discussed as a possible cause. In the present work, DWTTs for X65, X70 and X80 were performed. In addition to conventional DWTT specimen with a pressed notch (PN), PN specimen with a back slot and specimens with a chevron notch (CN) or a static pre-cracked (SPC) were examined. The fracture appearances were compared in the different strength and in the different initial notch type. The frequency of the inverse fracture appeared in these DWTTs were different in each material and each specimen type, but there were no cases free from the inverse fracture. The inverse fracture was investigated by fractography and the hardness profiles along the under layer of the fracture surfaces. Also, the strain histories during impact in DWTTs were measured by the digital image correlation technique based on the high-speed camera images. The DWTT specimen purpose is to evaluate the brittle crack arrestability of the material in a pressurized linepipe. The DWTT results should be examined with a manner of a running brittle crack in a pressurized linepipe. A large scale brittle crack arrest test, so called temperature gradient ESSO test was also performed for X65 mother plate. The shear area fraction measured in DWTT fracture appearance was compared with the local shear lip thickness fraction in ESSO test. The count of the inverse fracture was discussed in comparison with the long brittle crack arrest behavior in ESSO test.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Takahiro Sakimoto ◽  
Toshihiko Amano ◽  
Takashi Hiraide ◽  
Tetsuya Tagawa ◽  
Satoshi Igi ◽  
...  

Abstract The drop-weight tear test (DWTT) has been widely used to evaluate the resistance of linepipe steels against brittle crack propagation, and the shear area fraction SA% in the DWTT has been adopted in the requirement for the linepipe steels. However, recent studies have pointed out the issue of ambiguity in evaluation of the DWTT when a ductile crack initiates from the notch and then transits to a brittle crack during ductile crack propagation. This fracture behavior is termed “inverse fracture.” According to the API Recommended Practice 5L3 (API RP 5L3), a test is considered invalid when a DWTT specimen shows inverse fracture. In this case, it is difficult to examine the acceptance criterion (85% shear area transition temperature) for linepipe steels. Because the purpose of the DWTT is to evaluate the brittle crack arrestability of the steels in a pressurized linepipe, the DWTT results should be examined with a propagating brittle crack arrest test. A large-scale brittle crack arrest test called the West Jefferson test is generally conducted to reproduce the crack propagation and arrest behavior in actual linepipes. However, it is somewhat difficult to control the lower test temperature and to initiate brittle crack in recent high-toughness steels in this burst test. Although the test stress conditions of the uniaxial tension in the plate tension brittle crack arrest test and the biaxial tension in a pressurized pipe are different, the plate tension brittle crack arrest test has the advantages of accurate control of the test temperature, test stress, and brittle crack initiation in comparison with the actual pipe burst test. Therefore, in this study, the brittle crack arrestability of linepipe steel which showed inverse fracture in the DWTT was investigated by conducting plate tension brittle crack arrest tests under an isothermal condition (crack arrest temperature test (CAT test)), which simulates the condition of the actual pipelines in service. This study also investigated the local shear lip thickness fraction in the CAT tests together with the shear area fraction SA% measured in DWTTs. Based on the results, the effect of brittle crack arrestability on inverse fracture appearance in the DWTTs was discussed in comparison with the brittle crack arrest behavior in the CAT tests.


1981 ◽  
Vol 1981 (149) ◽  
pp. 211-218
Author(s):  
Takeshi Kanazawa ◽  
Susumu Machida ◽  
Hiroshi Yajima ◽  
Hajime Kawano

1996 ◽  
Vol 1996 (179) ◽  
pp. 389-398 ◽  
Author(s):  
Shuji Aihara ◽  
Susumu Machida ◽  
Hitoshi Yoshinari ◽  
Yutaka Tsuchida

Author(s):  
B. Prabel ◽  
S. Marie ◽  
A. Combescure

R&D activities and some development are performed at CEA on the brittle crack propagation and arrest. Phenomena occurring after the initiation of a brittle crack are not yet well understood. Absence of model able to predict the rapid growth of a brittle crack motivates this study. Due to the rapid growth of the crack, inertial effects and dynamic fracture should be considered. Assumption of a linear elastic solid are often preferred, but when plasticity of the material become non negligible (which is the case in the vicinity of the transition zone), these models become more limited. That’s why the paper presented here deals with dynamic crack propagation in elastic-viscoplastic material and aims at proposing a model able to predict the brittle crack propagation and arrest. To this end, experimental work is carried out for different geometries made of french RPV ferritic steel. Compact Tension specimens with different thickness, isothermal rings under compression with different positions of the initial defect to study also a mixed mode configuration. The test conditions and mains results (crack initiation, crack velocity measurements, ...) are collected and presented in a first part of the paper. To model efficiently the crack propagation in the Finite Element calculation, the eXtended Finite Element Method (X-FEM) implemented in the CEA F.E. software CAST3M is described in the second part of the paper. Thanks to this numerical technique, the crack path does not need to follow the element edges and the crack progress is directly incorporated in the degrees of freedom of the elements crossed by the crack. A two-steps methodology is presented in the third and fourth parts of this paper. The first step consider only the CT specimen, experimental crack speed evolution with time is imposed in numerical simulations. Energy terms and stress field at the crack tip are evaluated and discussed to build up a criterion. Then, the criterion identified on CT specimen is used in a second step as a predictive model to simulate crack propagation for each geometry studied (CT, ring in both mode I and mixed mode). In particular, crack propagation models based on the stress field evaluated at the crack tip and on a critical cleavage stress dependent on the strain rate, exhibit very good agreement with experimental data in term of crack speed, crack path and crack length at arrest. The mixed mode case is discussed in detail because to be pertinent, a model of brittle crack propagation should not only give the crack speed, but also its preferred direction of evolution.


Author(s):  
R. Kurth ◽  
S. Kalyanam ◽  
E. Kurth ◽  
G. Wilkowski ◽  
F. Brust ◽  
...  

This is a report of the calculation of the probability of brittle fracture and crack arrest for a series of X42 A-series and B-series pipelines. This paper provides the probabilistic analysis to determine the probability distribution of crack propagation velocities using the material resistance developed from Charpy and Drop Weight Tear Tests (DWTT).


Sign in / Sign up

Export Citation Format

Share Document