Experimental Studies on Aerodynamic Characteristics of Pantograph System According to the Pantograph Cover Configurations for High Speed Train

Author(s):  
Yeongbin Lee ◽  
Minho Kwak ◽  
Kyu Hong Kim ◽  
Dong-Ho Lee

In this study, the aerodynamic characteristics of pantograph system according to the pantograph cover configurations for high speed train were investigated by wind tunnel test. Wind tunnel tests were conducted in the velocity range of 20∼70m/s with scaled experimental pantograph models. The experimental models were 1/4 scaled simplified pantograph system which consists of a double upper arm and a single lower arm with a square cylinder shaped panhead. The experimental model of the pantograph cover is also 1/4 scaled and were made as 4 different configurations. It is laid on the ground plate which modeled on the real roof shape of the Korean high speed train. Using a load cell, the aerodynamic force such as a lift and a drag which were acting on pantograph system were measured and the aerodynamic effects according to the various configurations of pantograph covers were investigated. In addition, the total pressure distributions of the wake regions behind the panhead of the pantograph system were measured to investigate the variations of flow pattern. From the experimental test results, we checked that the flow patterns and the aerodynamic characteristics around the pantograph systems are varied as the pantograph cover configurations. In addition, it is also found that pantograph cover induced to decrease the aerodynamic drag and lift forces. Finally, we proposed the aerodynamic improvement of pantograph cover and pantograph system for high speed train.

2007 ◽  
Vol 2007.82 (0) ◽  
pp. _10-30_
Author(s):  
Ken-taro NAKAGAWA ◽  
Ryo NOMURA ◽  
Hideki KAWAMOTO ◽  
Kazuto NAKAI ◽  
Hirofumi YAMAMORI

Author(s):  
Tian Li ◽  
Ming Li ◽  
Zheng Wang ◽  
Jiye Zhang

In wind tunnel experiments, the inter-car gaps are designed in such a way as to separate the force measurements for each car and prevent the interference between cars during tests. Moreover, the inter-car gap has a significant effect on the aerodynamic drag of a train. In order to guide the design of the inter-car gaps between cars in wind tunnel experiments, the impact of the inter-car gap length on the aerodynamic characteristics of a 1/8th scale high-speed train is investigated using computational fluid dynamics. The shear stress transport k-ω model is used to simulate the flow around a high-speed train. The aerodynamic characteristics of the train with 10 different inter-car gap lengths are numerically simulated and compared. The 10 different inter-car gap lengths are 5, 8, 10, 15, 20, 30, 40, 50, 60, and 80 mm. Results indicate that the aerodynamic drag coefficients obtained using computational fluid dynamics fit the experimental data well. Rapid pressure variations appear in the upper and lower parts of the inter-car gaps. With the increase of the inter-car gap length, the drag force coefficient of the head car gradually increases. The total drag force coefficients of the trains with the inter-car gap length less than 10 mm are practically equal to those of the trains without inter-car gaps. Therefore, it can be concluded from the present study that 10 mm is recommended as the inter-car gap length for the 1/8th scale high-speed train models in wind tunnel experiments.


Author(s):  
Dilong Guo ◽  
Wen Liu ◽  
Junhao Song ◽  
Ye Zhang ◽  
Guowei Yang

The aerodynamic force acting on the pantograph by the airflow is obviously unsteady and has a certain vibration frequency and amplitude, while the high-speed train passes through the tunnel. In addition to the unsteady behavior in the open-air operation, the compressive and expansion waves in the tunnel will be generated due to the influence of the blocking ratio. The propagation of the compression and expansion waves in the tunnel will affect the pantograph pressure distribution and cause the pantograph stress state to change significantly, which affects the current characteristics of the pantograph. In this paper, the aerodynamic force of the pantograph is studied with the method of the IDDES combined with overset grid technique when high speed train passes through the tunnel. The results show that the aerodynamic force of the pantograph is subjected to violent oscillations when the pantograph passes through the tunnel, especially at the entrance of the tunnel, the exit of the tunnel and the expansion wave passing through the pantograph. The changes of the pantograph aerodynamic force can reach a maximum amplitude of 106%. When high-speed trains pass through tunnels at different speeds, the aerodynamic coefficients of the pantographs are roughly the same.


2011 ◽  
Vol 66-68 ◽  
pp. 1878-1882
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Chen Guang Fan ◽  
Li Lu

The aerodynamic performances of a high speed train will significant change under the action of the crosswind. Large eddy simulation (LES) was made to solve the flow around a simplified CRH2 high speed train with 250km/h and 350km/h under the influence of a crosswind with 28.4m/s base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of static train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field around train is completely different between Wind tunnel experiment and factual running. Many vortices will be produced on the leeside of the train with alternately vehicle bottom and back under the influence of a crosswind. The flow field around train is similar with different vehicle speed.


2021 ◽  
pp. 136943322199249
Author(s):  
Huan Li ◽  
Xuhui He ◽  
Liang Hu ◽  
Guoji Xu

This study presents an investigation to quantify the aerodynamics of truss bridge-girders via wind tunnel test and kriging surrogate model. Currently, the conventional methods documented in design specifications only take into consideration the mean drag force at null attack angle. To gain an in-depth understanding on the aerodynamics of truss bridge-girders, experiments on simplified bridge-girder models with various geometric parameters were carried out in uniform flow. A total of 15 truss bridge-girder models with aspect ratio (the ratio of width to height) B/D = 1.0, 1.3, 1.6, 1.9, and 2.2, solidity ratio (the ratio of projected to envelope areas) Φ = 0.20, 0.25, 0.30, 0.35, and 0.40, and two typical truss topologies (Warren and Pratt trusses) were examined in the most concerned range of wind angle of attack α = [–6°, 6°]. These truss bridge-girder models cover most of the high-speed railway bridges widely used in China. Experimental results show that the truss topology has limited effects on the aerodynamics of truss bridge-girders, whereas the effects of α, B/D, and Φ are significant. Based on these wind tunnel results, the ordinary kriging surrogate model was utilized to approximate the aerodynamics of truss bridge-girders. In using this model, aerodynamic force values for test cases can be interpolated with zero variance and uncertainties in unsampled design zones where geometric parameters can be quantified with Gaussian variance.


2017 ◽  
Vol 2017 (4) ◽  
pp. 82-102
Author(s):  
Paweł Ruchała ◽  
Robert Placek ◽  
Wit Stryczniewicz ◽  
Jan Matyszewski ◽  
Dawid Cieśliński ◽  
...  

Abstract The paper presents results of wind tunnel tests of the Experimental Rocket Platform (ERP), which is developed in Institute of Aviation. It is designed as an easy accessible and affordable platform for microgravity experiments. Proposed design enables to perform experiments in microgravity for almost 150 seconds with apogee of about 100 km. The full-scale model of the ERP has been investigated in the T-3 wind tunnel in Institute of Aviation. During the investigation, the aerodynamic loads of the rocket has been measured for the angle of attack up to 10° and the different rotation angle around the longitudinal axis (up to 90°, depending on the configuration). Three configurations has been investigated: • without fins and boosters • with fins and without boosters • with fins and boosters Additionally, the measurements of velocity field around the ERP using the Particle Image Velocimetry (PIV) has been performed. Based on the wind tunnel test, an influence of fins and boosters on aerodynamic characteristics of the rocket has been described. Results of the wind tunnel tests show relatively high contribution of boosters in total aerodynamic drag. Some conclusions concerning performance and stability of the rocket have been presented.


Author(s):  
Ming Wang ◽  
Xiao-Zhen Li ◽  
Jun Xiao ◽  
Hai-Qing Sha ◽  
Qi-Yang Zou

The aerodynamic characteristics of typical high-speed train can be affected by the operating infrastructure, which will affect the flow structure around train body. Five different infrastructure scenarios, including no infrastructure, flat ground, embankment, viaduct and truss bridge, are systemically studied. The purpose is to examine the uncertainties of aerodynamic coefficients caused by the infrastructure. Attention is drawn to variations of aerodynamic coefficients at certain yaw angles caused by the changes in crosswind and train speed. The middle car is chosen for quantifying the effects of five infrastructures by using wind tunnel test and numerical simulations, then followed by a detailed study on aerodynamic characteristics of three cars of train running on viaduct. Pressure distributions are also drawn for a better interpretation. Result shows that the uncertainties in aerodynamic coefficients becomes more obvious as the infrastructure gets complex and yaw angles get bigger. The aerodynamic coefficients of three cars with the viaduct scenario show the similar uncertainties, which are mostly affected by the change in crosswind rather than the train speed.


2011 ◽  
Vol 97-98 ◽  
pp. 752-755 ◽  
Author(s):  
Jing Yu Wang ◽  
Xing Jun Hu ◽  
Ying Chao Zhang ◽  
Bo Yang

To research the aerodynamic characteristics of minibus, the simplified model is studied with simulation and wind tunnel test. The validated method was adopted in the numerical simulation, the wind tunnel test were carried out in order to validate the results of numerical simulation. The tests include aerodynamic drag measure, filament method, and laser flow visualization. Through the contrasted research the results of simulation and test, the aerodynamic characteristics of minibus was analyzed and the characteristic of field around minibus was discovered. The conclusions provide the theoretical foundation for styling optimization of minibus, which are very helpful to develop new vehicle styling.


Sign in / Sign up

Export Citation Format

Share Document