Simple Dynamics and Open-Loop Control for Horizontal Boom Motion of Rotary Cranes

Author(s):  
Naoki Uchiyama ◽  
Shigenori Sano ◽  
Huimin Ouyang

This paper presents a simple model of rotary crane dynamics that includes only significant nonlinear force terms. This simple model allows to derive analytical solutions of the differential equations of the model. Thus, a simple trajectory that considers residual vibration suppression without sensing it, using only horizontal boom motion, can be generated by solving algebraic equations numerically. The effectiveness of the proposed method is demonstrated by numerical simulations and experimental results.

2004 ◽  
Vol 11 (3-4) ◽  
pp. 377-382 ◽  
Author(s):  
Paolo Pennacchi

Open-loop control techniques, such as command input preshaping, are quite sensible to modelling errors and noise. In the paper, an analysis and a discussion about the robustness of the technique with respect to the errors than can affect estimation of the values of the system parameters is presented.


Author(s):  
G. Mimmi ◽  
L. Frosini ◽  
P. Pennacchi ◽  
C. Rottenbacher

Abstract This paper describes the experimental results of an open-loop control technique applied to a flexible manipulator, specially designed for space duties, in order to reduce the residual vibrations at the end of the positioning. The experimental set-up is a system with two flexible links with rectangular section connected by rotational joints. First, the experimental identification of the system parameters has been carried out. Then, four different motion inputs have been implemented. The performances of these motion inputs are compared in terms of residual vibration at the end of the positioning. The experimental results confirm the effectiveness of the motion input pre-shaping technique in the reduction of the residual vibrations.


1998 ◽  
Author(s):  
C. Truman ◽  
Lenore McMackin ◽  
Robert Pierson ◽  
Kenneth Bishop ◽  
Ellen Chen

2008 ◽  
Author(s):  
Thomas Bifano ◽  
Jason Stewart ◽  
Alioune Diouf

2011 ◽  
Vol 418-420 ◽  
pp. 1865-1868
Author(s):  
Ming Jin Yang ◽  
Xi Wen Li ◽  
Zhi Gang Wang ◽  
Tie Lin Shi

The performance of speed regulating is very important to the mixing process with safe, efficient operation and high quality of production. Strategies and practices of responses and optimization of a PID-based speed regulating system of a planetary mixer were presented in this paper. Research results show that: by means of the signal constraint function presented by Simulink Response Optimization, optimization PID parameters of the 2-DOF-PID controller can be obtained, and the response of close-loop control system has quite good performance of overshoot, response time, and stability compared with an open-loop control system.


2002 ◽  
Vol 21 (10-11) ◽  
pp. 849-859 ◽  
Author(s):  
Kenneth A. Mcisaac ◽  
James P. Ostrowski

In this paper, we describe experimental work using an underwater, biomimetic, eel-like robot to verify a simplified dynamic model and open-loop control routines. We compare experimental results to previous analytically derived, but approximate expressions for proposed gaits for forward/backward swimming, circular swimming, sideways swimming and turning in place. We have developed a five-link, underwater eel-like robot, focusing on modularity, reliability and rapid prototyping, to verify our theoretical predictions. Results from open-loop experiments performed with this robot in an aquatic environment using an off-line vision system for position sensing show good agreement with theory.


Sign in / Sign up

Export Citation Format

Share Document