Nanocrystalline Diamond Coated Tool Performance in Machining of LM6 Aluminium Alloy/Alumina MMC

Author(s):  
Ramasubramanian Kannan ◽  
Arunachalam Narayanaperumal ◽  
Mamidanna Sri Ramachandra Rao

Aluminium based metal matrix composites (MMC) gain its importance in automotive and aerospace applications due to their high strength to low weight ratio, which leads to reduced fuel consumption and improved performance. However the usage of MMC is limited due to its poor machinability. The presence of hard reinforcing particles in MMC makes these materials difficult to machine. A cutting tool with high hardness and low coefficient of friction is required for machining this MMC material effectively. In this paper a comparative study on machinability of different coated tools on LM6 aluminum alloy/alumina MMC are conducted and presented. Experimental results on tool wear, cutting force and surface finish indicate that nano-crystalline diamond coated tools (NCD) outperform the other commercially available coated tools for machining this metal matrix composites.

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


In the present day engineering design and development activities many Scientists, Researchers and Engineers are striving hard to develop new and better engineering materials, which accomplishes high strength, low weight and energy efficient materials since the problems of environment and energy are major threshold areas. The development of new materials is growing day by day to replace the conventional materials in aerospace, marine engineering, automobile engineering industries etc., Hence, composite materials are found to be an alternative. A variety of metals and their alloys such as Aluminum, Magnesium and Titanium are comprehensively used as matrix materials. Among these Aluminium alloys have been used extensively, because of their excellent strength, low density, corrosion resistance and toughness. Similarly, many researchers have attempted to develop aluminum based metal matrix composites using different reinforcements such as SiC, Al2O3, B4C, TiC, TiO2, B4C etc., are added to the matrix to get required MMC’s. Among these reinforcements, B4C emerged as an exceptional reinforcement due to its high strength to density ratio, possesses high hardness and avoid the formation of interfacial reaction products with aluminum. Hence, in this paper attempts are made to fabricate Al 6061-3, 6, 9 and 12 wt.% B4C metal matrix composites by stir casting process to study fatigue life and fracture toughness as per ASTM standards. It is evident that fatigue strength and fracture toughness of the composites were enhanced with the addition of the wt.% of the reinforcement.


2018 ◽  
Vol 5 ◽  
pp. 7 ◽  
Author(s):  
Vemula Vijaya Vani ◽  
Sanjay Kumar Chak

Metal Matrix Composites are developed in recent years as an alternative over conventional engineering materials due to their improved properties. Among all, Aluminium Matrix Composites (AMCs) are increasing their demand due to low density, high strength-to-weight ratio, high toughness, corrosion resistance, higher stiffness, improved wear resistance, increased creep resistance, low co-efficient of thermal expansion, improved high temperature properties. Major applications of these materials have been in aerospace, automobile, military. There are different processing techniques for the fabrication of AMCs. Powder metallurgy is a one of the most promising and versatile routes for fabrication of particle reinforced AMCs as compared to other manufacturing methods. This method ensures the good wettability between matrix and reinforcement, homogeneous microstructure of the fabricated MMC, and prevents the formation of any undesirable phases. This article addresses mainly on the effect of process parameters like sintering time, temperature and particle size on the microstructure of aluminum metal matrix composites.


2021 ◽  
Vol 23 (07) ◽  
pp. 690-699
Author(s):  
Laxman Laxman ◽  
◽  
Dr. Kishan Lal ◽  

Particulate Reinforced Al/SiC Metal Matrix Composites (PRALSICMMC) is gradually becoming very important materials in manufacturing industries e.g. aerospace, automotive, and automobile industries due to their superior properties such as lightweight, low density, high strength to weight ratio, high hardness, high temperature, and thermal shock resistance, superior wear and corrosive resistance, high specific modulus, high fatigue strength, etc. In this study aluminum (Al- 6063)/SiC Silicon carbide reinforced particles metal-matrix composites (MMCs) are fabricated by melt-stirring technique. The MMCs bars and circular plates are prepared with varying the reinforced particles of SiC by weight fraction ranging from 5%, 10%, 15%, and 20%. The average reinforced particles sizes of SiC are 220 mesh, 300 mesh, and 400 mesh respectively. The stirring process is carried out at 150 revs/min rotating speed by graphite impeller for 15 min. A series of machining tests are performed on EDM. Copper electrodes are used as tools (cathode), Prepared specimens of Al/SiC MMCs are used as workpiece (anode) and kerosene is used as the dielectric fluid. The Performance parameters measured during experimentation were Tool Wear Rate (g/min), Metal Removal Rate (g/min), Over Cut on diameter (mm), and Average Surface Roughness Ra (μm) for each experiment by varying Pulse Peak Current IP (2 Amp, 6 Amp, 10 Amp,14 Amp) and gap voltage Vg ( 25 Volts, 30 Volts, 35 Volts, and 40 Volts). The investigations of results are done graphically.


2014 ◽  
Vol 695 ◽  
pp. 32-35 ◽  
Author(s):  
Nanang Fatchurrohman ◽  
Ismed Iskandar ◽  
S. Suraya ◽  
Kartina Johan

In this paper sustainable analysis is performed due to the increasing demand for fuel efficiency. Current research focuses on high strength-light weight components in automobile which lead to the development of advance material parts with improved performance. A specific class of advanced material which has gained a lot of attention due for its potential is aluminium based metal matrix composites (Al-MMCs). Al-MMCs have some prospects for several applications in automobile parts. The analysis in this paper is a part of product development which plays a crucial role in determining a product's environmental impact. The objective was accomplished and thus to identify the potential of Al-MMCs rake disc for replacement of the conventional cast iron brake disc. The result indicated that the Al-MMCs have the potential to substitute the cast iron brake disc.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012193
Author(s):  
Anup Choudhury ◽  
Jajneswar Nanda ◽  
Sankar Narayan Das

Abstract This paper interprets the effect of sintering parameters like sintering time and sintering temperature as well as various sintering methods on distinct properties of the material. The variation of Physical, mechanical, and Tribological behaviour depending on sintering temperature, time and method based on various aluminium metal matrix composites have been investigated. The advantages of aluminium metal matrix composites are high strength to weight ratio, high wear resistance, and erosion resistance, etc. Aluminium Metal matrix composites have vast applications in various fields like structural, automobile, and aviation industries. The optimum value of sintering parameters and choice of sintering methods has a major role in getting these required properties of aluminium metal matrix composites prepared by the powder metallurgy process.


2020 ◽  
Vol 22 (1) ◽  
pp. 357-370 ◽  
Author(s):  
S. Sakthivelu ◽  
P. P. Sethusundaram ◽  
M. Meignanamoorthy ◽  
M. Ravichandran

AbstractMetal is the one of the important material in engineering materials because of their high strength to weight ratio. However the pure metals cannot be used as engineering materials due to their ductile property. So, to improve their mechanical properties, some of the high strength materials (not metals) were added as reinforcement to improve the mechanical properties of pure metals and the newly developed material is called as metal matrix composites. At present, Aluminium, Copper, Magnesium, Titanium and Iron have been used as matrix materials and materials like TiC, SiC, B4C, WC, Cr3 C, TiO2, ZrO2, Gr, MoS2 and Si3N4 have been used as reinforcements. There are many processing techniques to fabricate metal matrix composites namely stir casting, ultra-sonic assisted casting, compo-casting, rheo casting, powder metallurgy technique, etc,. Among these, stir casting process is the most suitable and economical method to fabricate the metal matrix composites. In this article, an effort has been made to review the work of various researchers to fabricate metal matrix composites through stir casting process.


2019 ◽  
Vol 895 ◽  
pp. 90-95
Author(s):  
S. Ghanaraja ◽  
R. Madhu ◽  
K.S. Ravikumar ◽  
P. Likith

Metal matrix composites with aluminium matrix and non-metallic reinforcements are popular candidates in automotive, aerospace, sports and military application because of their high strength-to-weight ratio, stiffness, wear resistance, high-temperature resistance, etc. often they are subjected to secondary manufacturing processes like extrusion, rolling, forging, etc. to suit the service requirements. Metal matrix composites reinforced by nanoparticles are very promising materials, suitable for a large number of applications. In the present investigation, nanocomposites have been synthesized by addition of 0.25, 0.5, 0.75, 1 and 1.25 wt% of nanoAl2O3 powder in to molten Al 1100-Mg alloy using stir casting method and then hot forged. The mechanical properties such as tensile strength, hardness and percentage elongations were studied for all the test specimens. The 0.75 wt% of nanoAl2O3 added forged nanocomposite exhibited higher hardness and 0.5 wt% of nanoAl2O3 added forged nanocomposite exhibited higher yield strength, tensile strength and percentage of elongation.


2014 ◽  
Vol 592-594 ◽  
pp. 349-353 ◽  
Author(s):  
V. Ramakoteswara Rao ◽  
N. Ramanaiah ◽  
M.M.M. Sarcar

Aluminium alloy (AA7075) is largely used in various fields of transport applications, including marine, automotive and aviation and aerospace due to their high strength-to-density ratio. The present work deals with the influence of TiC on the mechanical behavior of AA 7075 composites. TiC is particularly attractive as it offers high hardness and elastic modulus, low density, good wettability yet low chemical reactivity with aluminium melts. The aluminium metal matrix composites (AMMCs) are produced as AA 7075 matrix metal and TiC particulates of an average size of 2µm as reinforced particles through stir casting, Magnesium added to the melt to overcome the wetting problem between TiC and liquid AA7075 metal. AMMCs are produced in different %weight of TiC ranging between 2 to 10%.These composites are characterized with optical, SEM and EDS analysis in as-cast condition and T6condition and hardness are predicted using macro vickers hardness tester. The test results showed increasing hardness of composites compared with matrix (AA7075) because of the presence of the increased reinforced material (TiC)


Sign in / Sign up

Export Citation Format

Share Document