Friction Sintering of Copper Powder Using a New Rapid, Cost Effective and Energy Efficient Process

2018 ◽  
Author(s):  
Vyas Mani Sharma ◽  
Debanjan Maity ◽  
Vikranth Racherla ◽  
Surjya Kanta Pal

Dendritic electrolytic copper powder was sintered using a newly developed friction sintering process. Green copper pellets of 14 mm height and 16 mm diameter were prepared at room temperature with 5-ton load and 60 seconds holding time. The pellets were sintered using a newly developed rapid, cost-effective, energy efficient, green friction sintering process that allows for easy and quick removal of sintered products. An aluminum plate of 14 mm thickness and 16.1 mm diameter through hole was used to hold green pellets during sintering. Frictional heat and pressure were applied on a top plate through a rotating 18 mm diameter, flat shoulder, WC tool. Sintering was performed at 12 kN axial load and 800 rpm tool rotational speed. Sintering temperatures were measured using K-type thermocouples. SEM (scanning electron microscope) images of fractured surfaces for sintered pellets show neck formation between copper particles. The neck formation is approximately uniform throughout the depth. This is in-line with hardness results along the thickness of the pellet. The process holds promise particularly for solid-state sintering of metal based powders.

2008 ◽  
Vol 368-372 ◽  
pp. 951-954 ◽  
Author(s):  
Jian Guang Xu ◽  
Hou An Zhang ◽  
Guo Jian Jiang ◽  
Wen Lan Li

SiC whisker reinforced (Mo,W)Si2 composite powder has been successfully synthesized by a novel process, named as chemical oven self-propagating high temperature synthesis (COSHS). The mixtures of Si and Ti powders were ignited as chemical oven. XRD result shows that the combustion product is mainly composed of (Mo,W)Si2 solid solution and SiC phases. SEM photo and EDS result show that SiC whisker is formed during this process. The as-prepared SiCW/(Mo,W)Si2 composite powder has been pressureless sintered. The microstructure and mechanical properties of the composite were investigated. Relative densities of the monolithic material and composite are 91.2% and 92.2%, respectively. The composite containing SiC whisker and (Mo,W)Si2 solid solution has higher Vickers hardness than monolithic MoSi2. Especially the room-temperature flexural strength of the composite is higher than that of monolithic MoSi2, from 135.5MPa for MoSi2 to 235.6MPa for composites with 10 vol.% WSi2 and 15 vol.% SiC, increased by 73.9%. The morphology of fractured surface of composite reveals the mechanism to improve flexural strength of MoSi2. The results of this work show that in situ SiCW/(Mo,W)Si2 composite powder prepared by COSHS technique could be successfully sintered via pressureless sintering process and significant improvement of room temperature flexural strength could be achieved. It could be a cost-effective process for industry in future applications.


2015 ◽  
Vol 14 (7) ◽  
pp. 1487-1494 ◽  
Author(s):  
Marco Arnesano ◽  
Gian Marco Revel ◽  
Filippo Pietroni ◽  
Jurgen Frick ◽  
Manuela Reichert ◽  
...  

2015 ◽  
Vol 292 ◽  
pp. 87-94 ◽  
Author(s):  
David Lloyd ◽  
Eva Magdalena ◽  
Laura Sanz ◽  
Lasse Murtomäki ◽  
Kyösti Kontturi

Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 893
Author(s):  
Olufunto T. Fanoro ◽  
Sundararajan Parani ◽  
Rodney Maluleke ◽  
Thabang C. Lebepe ◽  
Jose R. Varghese ◽  
...  

We herein report a facile, green, cost-effective, plant-mediated synthesis of gold nanoparticles (AuNPs) for the first time using Combretum erythrophyllum (CE) plant leaves. The synthesis was conducted at room temperature using CE leaf extract serving as a reducing and capping agent. The as-synthesized AuNPs were found to be crystalline, well dispersed, and spherical in shape with an average diameter of 13.20 nm and an excellent stability of over 60 days. The AuNPs showed broad-spectrum antibacterial activities against both pathogenic Gram-positive (Staphylococcus epidermidis (ATCC14990), Staphylococcus aureus (ATCC 25923), Mycobacterium smegmatis (MC 215)) and Gram-negative bacteria (Proteus mirabilis (ATCC 7002), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13822), Klebsiella oxytoca (ATCC 8724)), with a minimum inhibition concentration of 62.5 µg/mL. In addition, the as-synthesized AuNPs were highly stable with exceptional cell viability towards normal cells (BHK- 21) and cancerous cancer cell lines (cervical and lung cancer).


2021 ◽  
Vol 7 (3) ◽  
pp. 32
Author(s):  
Noorina Hidayu Jamil ◽  
Mohd. Mustafa Al Bakri Abdullah ◽  
Faizul Che Pa ◽  
Mohamad Hasmaliza ◽  
Wan Mohd Arif W. Ibrahim ◽  
...  

The main objective of this research was to investigate the influence of curing temperature on the phase transformation, mechanical properties, and microstructure of the as-cured and sintered kaolin-ground granulated blast furnace slag (GGBS) geopolymer. The curing temperature was varied, giving four different conditions; namely: Room temperature, 40, 60, and 80 °C. The kaolin-GGBS geopolymer was prepared, with a mixture of NaOH (8 M) and sodium silicate. The samples were cured for 14 days and sintered afterwards using the same sintering profile for all of the samples. The sintered kaolin-GGBS geopolymer that underwent the curing process at the temperature of 60 °C featured the highest strength value: 8.90 MPa, and a densified microstructure, compared with the other samples. The contribution of the Na2O in the geopolymerization process was as a self-fluxing agent for the production of the geopolymer ceramic at low temperatures.


2014 ◽  
Vol 878 ◽  
pp. 450-458
Author(s):  
Ling Jun Kong ◽  
Xiong Fei Zhang ◽  
Shuang Hong Tian ◽  
Ting Liu ◽  
Ya Xiong

Densified biomass pellets named as H/S-BPs were prepared from waste wood sawdust (S) in the presence of water hyacinth fiber (H) as solid bridge under room temperature and 6 MPa lower than in the previous study. Mechanical properties including relaxed density (ρr), resiliency (R), abrasion resistance (AR) and impact resistance index (IRI) were evaluated. Results showed that adding H greatly reduced negative effect of resiliency on the mechanical properties of H/S-BPs during storage. For example, H/S-BPs compressed at 6 MPa in an H/S mass ratio of 1 to 3 presented lower resiliency of 10% and higher relaxed density of 1.04 kg dm-3 than pellets without H fiber. This is due to the intertwining action of H fiber, what fabricates solid bridge, replacing the bonding creating by applying high pressure to resist the disruptive force caused by elastic recovery. Thus, compression of waste H and S in a mass ratio of 1 to 3 at room temperature under 6 MPa is a cost-effective process to produce densified sustainable bio-fuel pellet as well as dispose waste S and H, combining the economical and environmental benefits.


Zygote ◽  
2010 ◽  
Vol 18 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Tetsuo Ono ◽  
Eiji Mizutani ◽  
Chong Li ◽  
Teruhiko Wakayama

SummaryThe development of preservation techniques for male gametes at room temperature might allow us to store them in a simple and cost-effective manner. In this study, we studied the use of pure salt or sugar to preserve the whole cauda epididymidis, because it is known that food can be preserved in this way at room temperature for long periods. Mouse epididymides were placed directly in powdered salt (NaCl) or sugars (glucose or raffinose) for 1 day to 1 year at room temperature. Spermatozoa were recovered from the preserved organs after being rehydrated with medium and then isolated sperm heads were microinjected into fresh oocytes. Importantly, the oocyte activation capacity of spermatozoa was maintained after epididymal storage in NaCl for 1 year, whereas most untreated spermatozoa failed to activate oocytes within 1 month of storage. Pronuclear morphology, the rate of extrusion of a second polar body and the methylation status of histone H3 lysine 9 (H3K9me3) in those zygotes were similar to those of zygotes fertilized with fresh spermatozoa. However, the developmental ability of the zygotes decreased within 1 day of sperm storage. This effect led to nuclear fragmentation at the 2-cell embryo stage, irrespective of the storage method used. Thus, although the preserved sperm failed to allow embryo development, their oocyte activation factors were maintained by salt storage of the epididymis for up to 1 year at room temperature.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Mainak Ganguly ◽  
Simon Dib ◽  
Parisa A. Ariya

Sign in / Sign up

Export Citation Format

Share Document