Numerical Study of Large Amplitude Ship Motion With Forward Speed in Severe Seas

Author(s):  
D. C. Hong ◽  
H. G. Sung ◽  
S. Y. Hong

A three-dimensional time-domain calculation method is of crucial importance in prediction of ship motion with forward speed in a severe irregular sea. The exact solution of the free surface wave–ship interaction problem is very complicated because of the extremely nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. It is a simplified version of the method known as LAMP (Lin and Yue 1990) where the exact body boundary condition is applied on the instantaneous wetted surface of the ship while free-surface condition is linearized. In the present study, the Froude-Krylov force and the hydrostatic restoring force are calculated on the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials on the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials. The integral equation for the radiation potential is discretized according to the second-order boundary element method (Hong and Hong. 2008). The diffraction impulse response functions of the Wigley seakeeping model are presented for various Froude numbers. A simulation of coupled heave-pitch motion of the Wigley model advancing in regular head waves of large amplitude has been carried out. Comparisons between the fully linear and the present approximate body nonlinear computations have been made at various Froude numbers.

2010 ◽  
Vol 54 (02) ◽  
pp. 79-94 ◽  
Author(s):  
Xinshu Zhang ◽  
Piotr Bandyk ◽  
Robert F. Beck

Large-amplitude, time-domain, wave-body interactions are studied in this paper for problems with forward speed. Both two-dimensional strip theory and three-dimensional computation methods are shown and compared by a number of numerical simulations. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength flat panels on the exact body surface, the boundary integral equations are solved numerically at each time step. The strip theory method implements Radial Basis Functions to approximate the longitudinal derivatives of the velocity potential on the body. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing wetted body geometry. Extensive results are presented to validate the efficiency of the present methods. These results include the added mass and damping computations for a Wigley III hull and an S-175 hull with forward speed using both two-dimensional and three-dimensional approaches. Exciting forces acting on a Wigley III hull due to regular head seas are obtained and compared using both the fully three-dimensional method and the two-dimensional strip theory. All the computational results are compared with experiments or other numerical solutions.


Author(s):  
Huawei Zhou ◽  
Fuhua Wang ◽  
Renchuan Zhu ◽  
Kaiyuan Shi

Ship parametric roll is one of the main reasons for marine accidents and is introduced into the second-generation intact stability criteria by the International Maritime Organization (IMO) recently. In this paper, a 6-DOF three-dimensional time-domain model based on the IRF (Impulse Response Function) method is constructed to predict large-amplitude ship motions and investigate the phenomenon of parametric roll in head waves as well as major factors. The F-K forces and the restoring forces are calculated on the instantaneous wet surface while the radiation and diffraction forces are kept linear and transformed from frequency-domain results calculated with the three-dimensional Havelock form translating-pulsating source green function method. The proposed weakly nonlinear time-domain model is used to simulate motions of the C11 containership, which predicts the occurrence of the parametric roll successfully and shows a good agreement with the experimental data in amplitude. The inner mechanism of parametric roll is revealed by investigating the time-history and resonance frequencies of restoring forces and coefficients numerically.


Author(s):  
D. C. Hong ◽  
T. B. Ha ◽  
K. H. Song

The added resistance of a ship was calculated using Maruo’s formula [1] involving the three-dimensional Kochin function obtained using the source and normal doublet distribution over the wetted surface of the ship. The density of the doublet distribution was obtained as the solution of the three-dimensional frequency-domain forward-speed Green integral equation containing the exact line integral along the waterline. Numerical results of the Wigley ship models II and III in head seas, obtained by making use of the inner-collocation 9-node second-order boundary element method have been compared with the experimental results reported by Journée [2]. The forward-speed hydrodynamic coefficients of the Wigley models have shown no irregular-frequencylike behavior. The steady disturbance potential due to the constant forward speed of the ship has also been calculated using the Green integral equation associated with the steady forward-speed free-surface Green function since the so-called mj-terms [3] appearing in the body boundary conditions contain the first and second derivatives of the steady potential over the wetted surface of the ship. However, the free-surface boundary condition was kept linear in the present study. The added resistances of the Wigley II and III models in head seas obtained using Maruo’s formula showing acceptable comparison with experimental results, have been presented. The added resistances in following seas obtained using Maruo’s formula have also been presented.


1998 ◽  
Vol 42 (02) ◽  
pp. 139-153 ◽  
Author(s):  
N. Fonseca ◽  
C. Guedes Soares

The vertical motions and wave induced loads on ships with forward speed are studied in the time domain, considering non-linear effects associated with large amplitude motions and hull flare shape. The method is based on a strip theory, using singularities distributed on the cross sections which satisfy the linear free surface condition. The solution is obtained in the time domain using convolution to account for the memory effects related to the free surface oscillations. In this way the linear radiation forces are represented in terms of impulse response functions, infinite frequency added masses and radiation restoring coefficients. The diffraction forces associated with incident wave scattering are linear. The hydrostatic and Froude-Krylov forces are evaluated over the instantaneous wetted surface of the hull to account for the large amplitude motions and hull flare. The radiation contribution for wave loads is also obtained in the time domain using convolution to account for the memory effects related to the free surface oscillations. Results of motions and wave loads for the S175 container ship are presented and analyzed. The results from the present method are compared with linear results.


Author(s):  
D. C. Hong ◽  
S. Y. Hong ◽  
H. G. Sung

The radiation and diffraction potentials of a ship advancing in waves are calculated in the time-domain using the three-dimensional time-domain forward-speed free-surface Green function and the Green integral equation on the basis of the Neumann-Kelvin linear wave hypothesis. The Green function approximated by Newman for large time is used together with the Green function by Lamb for small time. The time-domain diffraction problem is solved for the time derivative of the potential by using the time derivative of the impulsive incident wave potential represented by using the complementary complex error function. The integral equation for the potential is discretized according to a second-order boundary element method where the collocation points are located inside the panel. It makes it possible to take account of the line integral along the waterline in a rigorous manner. The six-degree-of-freedom motion and memory functions as well as the diffraction impulse response functions of a hemisphere and the Wigley seakeeping model are presented for various Froude numbers. Comparisons of the wave damping and exciting force and moment coefficients for zero forward speed, calculated by using the Fourier transforms of the time-domain results and the frequency-domain coefficients calculated by using the improved Green integral equation which is free of the irregular frequencies, have been shown to be satisfactory. The wave damping coefficients for non-zero forward speed, calculated by using Fourier transforming of the present time-domain results have also been compared to the experimental results and agreement between them has been shown to be good. A simulation of coupled heave-pitch motion of the Wigley seakeeping model advancing in regular head waves of unit amplitude has been carried out.


Author(s):  
Xinshu Zhang ◽  
Robert F. Beck

Three-dimensional, time-domain, wave-body interactions are studied in this paper for cases with and without forward speed. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength flat panels on the exact wetted body surface, the boundary integral equations are numerically solved at each time step. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous wetted body geometry. The desingularized method applied on the free surface produces nonsingular kernels in the integral equations by moving the fundamental singularities a small distance outside of the fluid domain. Constant-strength flat panels are used for bodies with any arbitrary shape. Extensive results are presented to validate the efficiency of the present method. These results include the added mass and damping computations for a hemisphere. The calm water wave resistance for a submerged spheroid and a Wigley hull are also presented. All the computations with forward speed are started from rest and proceeded until a steady state is reached. Finally, the time-domain forced motion results for a modified Wigley hull with forward speed are shown and compared to the experiments for both linear computations and body-exact computations.


2020 ◽  
Vol 27 (1) ◽  
pp. 29-38
Author(s):  
Teng Zhang ◽  
Junsheng Ren ◽  
Lu Liu

AbstractA three-dimensional (3D) time-domain method is developed to predict ship motions in waves. To evaluate the Froude-Krylov (F-K) forces and hydrostatic forces under the instantaneous incident wave profile, an adaptive mesh technique based on a quad-tree subdivision is adopted to generate instantaneous wet meshes for ship. For quadrilateral panels under both mean free surface and instantaneous incident wave profiles, Froude-Krylov forces and hydrostatic forces are computed by analytical exact pressure integration expressions, allowing for considerably coarse meshes without loss of accuracy. And for quadrilateral panels interacting with the wave profile, F-K and hydrostatic forces are evaluated following a quad-tree subdivision. The transient free surface Green function (TFSGF) is essential to evaluate radiation and diffraction forces based on linear theory. To reduce the numerical error due to unclear partition, a precise integration method is applied to solve the TFSGF in the partition computation time domain. Computations are carried out for a Wigley hull form and S175 container ship, and the results show good agreement with both experimental results and published results.


Author(s):  
D. C. Hong ◽  
S. Y. Hong ◽  
G. J. Lee ◽  
M. S. Shin

The radiation-diffraction potential of a ship advancing in waves is studied using the three-dimensional frequency-domain forward-speed free-surface Green function (Brard 1948) and the forward-speed Green integral equation (Hong 2000). Numerical solutions are obtained by making use of a second-order inner collocation boundary element method which makes it possible to take account of the line integral along the waterline in a rigorous manner (Hong et al. 2008). The present forward-speed Green integral equation includes not only the usual free surface condition for the potential but also the adjoint free surface condition for the forward-speed free-surface Green function as indicated by Brard (1972). Comparison of the present numerical results of the heave-heave wave damping coefficients and the experimental results for the Wigley ship models I, II and III (Journee 1992) has been presented. These coefficients are compared with those calculated without taking into account of the line integral along the waterline in order to show the forward speed effect represented by the waterline integral when it is properly included in the free-surface Green integral equation. Comparison of the present numerical results and the equivalent time-domain results (Hong et al. 2013) has also been presented.


Sign in / Sign up

Export Citation Format

Share Document