Drift Forces on a Floating Body of Simple Geometry Due to Second Order Interactions Between Pairs of Harmonics With Different Frequencies

Author(s):  
Joa˜o Pessoa ◽  
Nuno Fonseca ◽  
C. Guedes Soares

The paper presents an investigation of the slowly varying second order drift forces on a floating body of simple geometry. The body is axis-symmetric about the vertical axis, like a vertical cylinder with a rounded bottom and a ratio of diameter to draft of 3.25. The hydrodynamic problem is solved with a second order boundary element method. The second order problem is due to interactions between pairs of incident harmonic waves with different frequencies, therefore the calculations are carried out for several difference frequencies with the mean frequency covering the whole frequency range of interest. Results include the surge drift force and pitch drift moment. The results are presented in several stages in order to assess the influence of different phenomena contributing to the global second order responses. Firstly the body is restrained and secondly it is free to move at the wave frequency. The second order results include the contribution associated with quadratic products of first order quantities, the total second order force, and the contribution associated to the free surface forcing.

Author(s):  
João Pessoa ◽  
Nuno Fonseca ◽  
C. Guedes Soares

The paper presents an experimental and numerical investigation on the motions of a floating body of simple geometry subjected to harmonic and biharmonic waves. The experiments were carried out in three different water depths representing shallow and deep water. The body is axisymmetric about the vertical axis, like a vertical cylinder with a rounded bottom, and it is kept in place with a soft mooring system. The experimental results include the first order motion responses, the steady drift motion offset in regular waves and the slowly varying motions due to second order interaction in biharmonic waves. The hydrodynamic problem is solved numerically with a second order boundary element method. The results show a good agreement of the numerical calculations with the experiments.


Author(s):  
Joa˜o Pessoa ◽  
Nuno Fonseca ◽  
C. Guedes Soares

The paper presents an experimental and numerical investigation on the motions of a floating body of simple geometry subjected to harmonic and bi-harmonic waves. The experiments were carried out in three different water depths representing shallow and deep water. The body is axis-symmetric about the vertical axis, like a vertical cylinder with a rounded bottom, and it is kept in place with a soft mooring system. The experimental results include the first order motion responses, the steady drift motion offset in regular waves and the slowly varying motions due to second order interaction in bi-harmonic waves. The hydrodynamic problem is solved numerically with a second order boundary element method. The results show a good agreement of the numerical calculations with the experiments.


Author(s):  
Joa˜o Pessoa ◽  
Nuno Fonseca ◽  
Suresh Rajendran ◽  
C. Guedes Soares

The paper presents an experimental investigation of the first order and second order wave exciting forces acting on a body of simple geometry subjected to long crested irregular waves. The body is axis-symmetric about the vertical axis, like a vertical cylinder with a rounded bottom, and it is restrained from moving. Second order spectral analysis is applied to obtain the linear spectra, coherence spectra and cross bi-spectra of both the incident wave elevation and of the horizontal and vertical wave exciting forces. Then the linear and quadratic transfer functions (QTF) of the exciting forces are obtained. The QTF obtained from the analysis of irregular wave measurements are compared with results from experiments in bi-chromatic waves and with numerical predictions from a second order potential flow code.


1993 ◽  
Vol 250 ◽  
pp. 121-142 ◽  
Author(s):  
John Grue ◽  
Enok Palm

The effect of the steady second-order velocities on the drift forces and moments acting on marine structures in waves and a (small) current is considered. The second-order velocities are found to arise due to first-order evanescent modes and linear body responses. Their contributions to the horizontal drift forces and yaw moment, obtained by pressure integration at the body, and to the yaw drift moment, obtained by integrating the angular momentum flux in the far field, are expressed entirely in terms of the linear first-order solution. The second-order velocities may considerably increase the forward speed part of the mean yaw moment on realistic marine structures, with the most important contribution occurring where the wave spectrum often has its maximal value. The contribution to the horizontal forces obtained by pressure integration is, however, always found to be small. The horizontal drift forces obtained by the linear momentum flux in the far field are independent of the second-order velocities, provided that there is no velocity circulation in the fluid.


Author(s):  
Charles Monroy ◽  
Yann Giorgiutti ◽  
Xiao-Bo Chen

The influence of current in sea-keeping problems is felt not only for first order quantities such as wave run-ups in front of the structure, but also mainly for second order quantities. In particular, the wave drift damping (which is expressed as the derivative of drift force with respect to the current) is of special interest for mooring systems. The interaction effects of a double-body steady flow on wave diffraction-radiation is studied through a decomposition of the time-harmonic potential into linear and interaction components. A boundary integral method is used to solve the first order problem. Ultimately, a far-field method is proposed to get access to second order drift forces.


Author(s):  
Tomoaki Utsunomiya

Abstract Higher-order boundary element method (HOBEM) for wave diffraction/radiation analysis is a powerful tool for its applicability to a general (curved) geometry. Inspired by the paper which examined the convergence of BIE code with constant panels (Martic, et al., 2018; OMAE2018-77999), the convergence characteristics of HOBEM with quadrilateral panels have been examined. Here, the effect of removal of irregular frequencies is particularly focused as discussed by Martic, et al. (2018). The irregular frequency removal has been made by the rigid-lid method which is applicable to HOBEM, where the intersection line between the body-surface and the free-surface should be carefully handled. The results show that for first order quantities the convergence is quite good for both cases with/without irregular frequency removal (except where the irregular frequencies affect for the case without irregular frequency removal). For mean drift forces, the convergence becomes poor particularly for the case without irregular frequency removal. The convergence characteristics are examined and some discussions are made.


1996 ◽  
Vol 107 (1) ◽  
pp. 121-131 ◽  
Author(s):  
M Mizunami

Synaptic transmission from second- to third-order neurons of cockroach ocelli occurs in an exponentially rising part of the overall sigmoidal characteristic curve relating pre- and postsynaptic voltage. Because of the nonlinear nature of the synapse, linear responses of second-order neurons to changes in ligh intensity are half-wave rectified, i.e., the response to a decrement in light is amplified whereas that to an increment in light is compressed. Here I report that the gain of synaptic transmission from second- to third-order neurons changes by ambient light levels and by wind stimulation applied to the cerci. Transfer characteristics of the synapse were studied by simultaneous intracellular recordings of second- and third-order neurons. Potential changes were evoked in second-order neurons by a sinusoidally modulated light with various mean luminances. With a decrease in the mean luminance (a) the mean membrane potential of second-order neurons was depolarized, (b) the synapse between the second- and third-order neurons operated in a steeper range of the exponential characteristic curve, where the gain to transmit modulatory signals was higher, and (c) the gain of third-order neurons to detect a decrement in light increased. Second-order neurons were depolarized when a wind or tactile stimulus was applied to various parts of the body including the cerci. During a wind-evoked depolarization, the synapse operated in a steeper range of the characteristic curve, which resulted in an increased gain of third-order neurons to detect light decrements. I conclude that the nonlinear nature of the synapse between the second- and third-order neurons provides an opportunity for an adjustment of gain to transmit signals of intensity change. The possibility that a similar gain control occurs in other visual systems and underlies a more advanced visual function, i.e., detection of motion, is discussed.


Potential flow theory is used to investigate the wave induced harmonic response and the mean drift of an articulated column in regular waves. The mean drift horizontal force is evaluated by means of the Stokes expansion to second order in wave steepness. Analyses based on both near field and far field formulations are shown to give identical expressions, provided that the second-order forces at the intersection between column and seabed are included in the near field approach. The latter have not been considered in previous studies concerned with drift forces on floating bodies. It is shown that the drift forces on a column, although of second order, can excite piech responses of first order: this is because articulated columns are designed to have a low natural frequency in the tilt mode, relative to wave frequencies. Comparison of the theoretical results with experimental data, from a model tested in regular waves, suggests reasonable agreement for the drift forces over a range of frequencies and two wave heights.


1996 ◽  
Vol 313 ◽  
pp. 39-54 ◽  
Author(s):  
J. A. P. Aranha

In a recent work, a simple formula was derived for the ‘wave drift damping’ in a two-dimensional floating body and the obtained expression is exact within the context of the related theory, where only leading-order terms in the forward speed are retained. This formula is now generalized for a three-dimensional problem and the coefficients of the ‘wave drift damping matrix’ are given explicitly in terms of the standard second-order steady forces and moment in the horizontal plane; Munk's yaw moment, related with the steady second-order potential and discussed in Grue & Palm (1993), is not analysed in this paper and the effect of an eventual small angular velocity around the vertical axis is also not considered.Numerical results agree in general with the proposed formula although in a specific case a consistent disagreement has been observed, as discussed in §5.


1976 ◽  
Vol 20 (02) ◽  
pp. 63-66 ◽  
Author(s):  
Chiang C. Mei

Salter has demonstrated experimentally that a horizontal cylinder in the free surface of water can be a device to extract energy from the incident waves. This paper proposes a design which is based on the idea of a tethered-float breakwater, and gives the theoretical design criteria for maximum power extraction from a general floating cylinder with one or two degrees of freedom. It is shown that the rate of energy extraction must be equal to the rate of radiation damping and that the floating body must be made to resonate then for a body with one degree of freedom, the maximum efficiency at a given frequency can be at leastone half if the body is symmetrical about a vertical axis, and greater for an asymmetrical body. For a body with two degrees of freedom, all the wave power can be extracted. Hydrodynamical aspects of the controlled motion are examined. Viscous effects are ignored.


Sign in / Sign up

Export Citation Format

Share Document