An Experimental Study of Shallow Water Wave Statistics on Mild Bed Slopes

Author(s):  
Vasiliki Katsardi ◽  
Chris Swan

This paper describes a new series of laboratory observations, undertaken in a purpose built wave flume, in which a number of scaled simulations of realistic ocean spectra were allowed to evolve over a range of mild bed slopes. The purpose of the study was to examine the distribution of wave heights and its dependence on the local water depth, d, the local bed slope, m, and the nature of the input spectrum; the latter considering variations in the spectral peak period, Tp, the spectral bandwidth and the wave steepness. The results of the study show that for mild bed slopes the statistical distributions of wave heights are effectively independent of both the bed slope and the spectral bandwidth. However, the peak period plays a very significant role in the sense that it alters the effective water depth. Following detailed comparisons with the measured data, the statistical distributions for wave heights in relatively deep water are found to be in reasonable agreement with the Forristall [1] and Glukhovskii [2] distributions. For intermediate water depths, the Battjes & Groenendijk [3] distribution works very well. However, for the shallowest water depths none of the existing distributions provides good agreement with the measured data; all leading to an over-estimate of the largest wave heights.

2021 ◽  
Vol 9 (5) ◽  
pp. 522
Author(s):  
Marko Katalinić ◽  
Joško Parunov

Wind and waves present the main causes of environmental loading on seagoing ships and offshore structures. Thus, its detailed understanding can improve the design and maintenance of these structures. Wind and wave statistical models are developed based on the WorldWaves database for the Adriatic Sea: for the entire Adriatic Sea as a whole, divided into three regions and for 39 uniformly spaced locations across the offshore Adriatic. Model parameters are fitted and presented for each case, following the conditional modelling approach, i.e., the marginal distribution of significant wave height and conditional distribution of peak period and wind speed. Extreme significant wave heights were evaluated for 20-, 50- and 100-year return periods. The presented data provide a consistent and comprehensive description of metocean (wind and wave) climate in the Adriatic Sea that can serve as input for almost all kind of analyses of ships and offshore structures.


Author(s):  
I. Karmpadakis ◽  
C. Swan ◽  
M. Christou

This paper concerns the statistical distribution of the crest heights associated with surface waves in intermediate water depths. The results of a new laboratory study are presented in which data generated in different experimental facilities are used to establish departures from commonly applied statistical distributions. Specifically, the effects of varying sea-state steepness, effective water depth and directional spread are investigated. Following an extensive validation of the experimental data, including direct comparisons to available field data, it is shown that the nonlinear amplification of crest heights above second-order theory observed in steep deep water sea states is equally appropriate to intermediate water depths. These nonlinear amplifications increase with the sea-state steepness and reduce with the directional spread. While the latter effect is undoubtedly important, the present data confirm that significant amplifications above second order (5–10%) are observed for realistic directional spreads. This is consistent with available field data. With further increases in the sea-state steepness, the dissipative effects of wave breaking act to reduce these nonlinear amplifications. While the competing mechanisms of nonlinear amplification and wave breaking are relevant to a full range of water depths, the relative importance of wave breaking increases as the effective water depth reduces.


2021 ◽  
Vol 224 (19) ◽  
Author(s):  
Amanda M. Palecek ◽  
Megan V. Novak ◽  
Richard W. Blob

ABSTRACT Wading behaviours, in which an animal walks while partially submerged in water, are present in a variety of taxa including amphibians, reptiles, mammals and birds. Despite the ubiquity of wading behaviours, few data are available to evaluate how animals adjust their locomotion to accommodate changes in water depth. Because drag from water might impose additional locomotor costs, wading animals might be expected to raise their feet above the water up to a certain point until such behaviours lead to awkward steps and are abandoned. To test for such mechanisms, we measured drag on models of the limbs of Chilean flamingos (Phoenicopterus chilensis) and measured their limb and body kinematics as they walked and waded through increasing depths of water in a zoo enclosure. Substantial drag was incurred by models of both open- and closed-toed feet, suggesting that flamingos could avoid some locomotor costs by stepping over water, rather than through it, during wading. Step height was highest while wading through intermediate water depths and while wading at a faster speed. Stride length increased with increasing water depth and velocity, and the limb joints generally flexed more while moving through intermediate water depths. However, movements of the head and neck were not strongly correlated with water depth or velocity. Our results show a wide range of kinematic changes that occur to allow wading birds to walk through different water depths, and have implications for better understanding the locomotor strategies employed by semi-aquatic species.


Author(s):  
Mohamed Latheef ◽  
Chris Swan

This paper concerns the statistical distribution of both wave crest elevations and wave heights in deep water. A new set of laboratory observations undertaken in a directional wave basin located in the Hydrodynamics laboratory in the Department of Civil and Environmental Engineering at Imperial College London is presented. The resulting data were analysed and compared to a number of commonly applied statistical distributions. In respect of the wave crest elevations the measured data is compared to both linear and second-order order distributions, whilst the wave heights were compared to the Rayleigh distribution, the Forristall (1978) [1] empirical distribution and the modified Glukhovskiy distribution ([2] and [3]). Taken as a whole, the data confirms that the directionality of the sea state is critically important in determining the statistical distributions. For example, in terms of the wave crest statistics effects beyond second-order are most pronounced in uni-directional seas. However, if the sea state is sufficiently steep, nonlinear effects arising at third order and above can also be significant in directionally spread seas. Important departures from Forristall’s empirical distribution for the wave heights are also identified. In particular, the data highlights the limiting effect of wave breaking in the most severe seas suggesting that many of the commonly applied design solutions may be conservative in terms of crest height and wave height predictions corresponding to a small (10−4) probability of exceedance.


Author(s):  
Øistein Hagen ◽  
Ida Håøy Grue ◽  
Jørn Birknes-Berg ◽  
Gunnar Lian ◽  
Kjersti Bruserud

In the design of new structures and assessment of existing structures, short- and long term statistical distributions of wave height, crest height and wave periods, as well as joint distributions, are important for structural integrity assessment. It is important to model the statistical distributions accurately to calculate wave design criteria and to assess fatigue life. A detailed study of the wave statistics for an offshore location at the Norwegian Continental Shelf field is carried out. Extensive time domain simulations for the complete scatter diagram of possible sea states are carried out by a second order wave model. Time series of the surface elevation are generated for JONSWAP and Torsethaugen wave spectra, and for several wave spreading models. Statistics for individual wave heights, crest heights and wave periods are established. The simulated results for the short-term statistics are compared with existing short term models that are commonly used, viz. the Forristal, Næss and Rayleigh wave height distributions, and the Forristall 2nd order crest height distribution. Also, parameterized distributions for wave height and for crest height are fitted to the simulated data. The long-term distributions F(H) and F(C) of all simulated individual wave heights H and crest heights C are determined by weighting the simulations with the long-term probability of occurrence of the sea state. Likewise, the long-term distributions F(Hmax) and F(Cmax) of the maximum simulated individual wave heights Hmax and crest heights Cmax in the sea states are determined. The design criteria for return periods R = 1, 10, 100 and 10 000 years are determined from the appropriate quantile levels. The effect of statistical uncertainty is investigated by comparing the confidence intervals for the estimated extreme values results as function of the number N of 3-hour time domain simulations per sea state for 10<N<500.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sebastian Teichert ◽  
Martin G. J. Löder ◽  
Ines Pyko ◽  
Marlene Mordek ◽  
Christian Schulbert ◽  
...  

AbstractThere is an increasing number of studies reporting microplastic (MP) contamination in the Arctic environment. We analysed MP abundance in samples from a marine Arctic ecosystem that has not been investigated in this context and that features a high biodiversity: hollow rhodoliths gouged by the bivalve Hiatella arctica. This bivalve is a filter feeder that potentially accumulates MPs and may therefore reflect MP contamination of the rhodolith ecosystem at northern Svalbard. Our analyses revealed that 100% of the examined specimens were contaminated with MP, ranging between one and 184 MP particles per bivalve in samples from two water depths. Polymer composition and abundance differed strongly between both water depths: samples from 40 m water depth showed a generally higher concentration of MPs and were clearly dominated by polystyrene, samples from 27 m water depth were more balanced in composition, mainly consisting of polyethylene, polyethylene terephthalate, and polypropylene. Long-term consequences of MP contamination in the investigated bivalve species and for the rhodolith bed ecosystem are yet unclear. However, the uptake of MPs may potentially impact H. arctica and consequently its functioning as ecosystem engineers in Arctic rhodolith beds.


Author(s):  
Reginaldo M. de Oliveira ◽  
Rubens A. de Oliveira ◽  
Sanzio M. Vidigal ◽  
Ednaldo M. de Oliveira ◽  
Lorença B. Guimarães ◽  
...  

ABSTRACT Cauliflower is a brassica produced and consumed in Brazil, whose cultivation depends on the adequate supply of water and nutrients. The objective of this study was to evaluate the effect of irrigation depths and nitrogen doses on the production components and water yield of cauliflower hybrid Barcelona CMS. The treatments consisted of five irrigation water depths (0, 75, 100, 125 and 150% of the crop evapotranspiration) combined with five nitrogen doses (0, 75, 150, 300 and 450 kg ha-1). The experiment was conducted in a completely randomized design with a split-plot arrangement. The effects of these factors were evaluated using the response surface methodology. The water yield of the crop decreases with increasing irrigation water depth; therefore, the yield is higher when water replenishment is lower than the recommended. The highest estimated total inflorescence yield is 24,547.80 kg ha-1, with a inflorescence mean diameter of 19.60 cm, a inflorescence mean height of 12.25 cm, and an inflorescence fresh weight of 858.90 g plant-1, obtained with an irrigation water depth equivalent to 132.09% of the crop evapotranspiration (ETc) and a nitrogen dose of 450 kg ha-1. The highest inflorescence diameter and height are obtained with an irrigation depth equivalent to 128.70 and 108.20% of ETc, respectively, and a nitrogen dose of 450 kg ha-1. Therefore, the best productivity response of the Barcelona CMS cauliflower hybrid can be obtained using an irrigation depth greater than the crop evapotranspiration, regardless of the nitrogen doses.


2011 ◽  
Vol 383-390 ◽  
pp. 2430-2436
Author(s):  
Jian Hua Hou ◽  
Min Quan Feng ◽  
Xiao Peng Xing ◽  
Zhen Hua Hou

The purpose of this paper is to find the pollution diffusion regularity near sewage outlet area of Yuncheng reach of the Fen River. A 2-D water hydrodynamic and quality model was used to simulate flow field, the water quality and contamination dispersion. The parameters of the model were calibrated with measured data of the water depth, flow and water quality in Yuncheng reach of the Fen River. According to the simulated result, the total area of pollution belt with 19 sewage outlets is 8.89km2 in normal year. And 3.89% of the reach has a worse water quality than V class in standard. The percentage of V and Ⅳ Class of water is 69.17% and 26.94%.In dry year, the total area of pollution belt with 19 sewage outlets is 8.89km2.The percentage of inferior V, V and Ⅳ Class of water is 27.80%, 69.46% and 2.74%. It was shown by the simulated results that the concentration gradient decreases with increasing distance to the outlets and the dilution and dispersion of pollutants was enhanced by a greater river flow.


Author(s):  
Roger Slora ◽  
Stian Karlsen ◽  
Per Arne Osborg

There is an increasing demand for subsea electrical power transmission in the oil- and gas industry. Electrical power is mainly required for subsea pumps, compressors and for direct electrical heating of pipelines. The majority of subsea processing equipment is installed at water depths less than 1000 meters. However, projects located offshore Africa, Brazil and in the Gulf of Mexico are reported to be in water depths down to 3000 meters. Hence, Nexans initiated a development programme to qualify a dynamic deep water power cable. The qualification programme was based on DNV-RP-A203. An overall project plan, consisting of feasibility study, concept selection and pre-engineering was outlined as defined in DNV-OSS-401. An armoured three-phase power cable concept assumed suspended from a semi-submersible vessel at 3000 m water depth was selected as qualification basis. As proven cable technology was selected, the overall qualification scope is classified as class 2 according to DNV-RP-A203. Presumed high conductor stress at 3000 m water depth made basis for the identified failure modes. An optimised prototype cable, with the aim of reducing the failure mode risks, was designed based on extensive testing and analyses of various test cables. Analyses confirmed that the prototype cable will withstand the extreme loads and fatigue damage during a service life of 30 years with good margins. The system integrity, consisting of prototype cable and end terminations, was verified by means of tension tests. The electrical integrity was intact after tensioning to 2040 kN, which corresponds to 13 000 m static water depth. A full scale flex test of the prototype cable verified the extreme and fatigue analyses. Hence, the prototype cable is qualified for 3000 m water depth.


Sign in / Sign up

Export Citation Format

Share Document