The Effect of Stick Slip Vibration on the Backward Whirl of Bottom Hole Assembly in Drillstring

Author(s):  
Dapeng Zhao ◽  
Sigve Hovda ◽  
Sigbjørn Sangesland

The whirl phenomena in the bottom hole assembly (BHA) is believed to be formed by the imbalance of the rotational drill collar. Backward whirl is caused by the nonlinear contact between the BHA and the borehole, and can be extremely damaging to the down hole tools and borehole. In the previous studies, a two-degrees-of-freedom lumped parameter model is developed for representing the drill collar in lateral motions (whirl). Due to the bit-rock interaction, the stick slip torsional vibration is very common. In the current work, therefore, the torsional vibration causing fluctuation of rotary speed is taken into account. The simulation results indicate that the drill collar whirls forward at lower constant rotary speed. With increasing rotary speed, the backward whirl is activated by the contact between the drill collar and the borehole wall. The nonlinear contact forces obey the Hertzian contact law, which led to lateral bounce of the drill collar and impact borehole wall chaotically. The modified Karnopp friction model is adopted to simulate the stick slip rotary vibration of the BHA. The different characters of lateral vibrations are identified by a power spectrum density diagram with and without consideration of the stick slip vibration.

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Parimal Arjun Patil ◽  
Catalin Teodoriu

Drillstring vibration is one of the limiting factors maximizing drilling performance. Torsional vibrations/oscillations while drilling is one of the sever types of drillstring vibration which deteriorates the overall drilling performance, causing damaged bit, failure of bottom-hole assembly, overtorqued tool joints, torsional fatigue of drillstring, etc. It has been identified that the wellbore-drillstring interaction and well face-drill bit interaction are the sources of excitation of torsional oscillations. Predrilling analysis and real time analysis of drillstring dynamics is becoming a necessity for drilling oil/gas or geothermal wells in order to optimize surface drilling parameters and to reduce vibration related problems. It is very challenging to derive the drillstring model considering all modes of vibrations together due to the complexity of the phenomenon. This paper presents the mathematical model of a torsional drillstring based on nonlinear differential equations which are formulated considering drillpipes and bottom-hole assembly separately. The bit–rock interaction is represented by a nonlinear friction forces. Parametric study has been carried out analyzing the influence of drilling parameters such as surface rotations per minute (RPM) and weight-on-bit (WOB) on torsional oscillations. Influences of properties of drillstring like stiffness and inertia, which are most of the times either unknown or insufficiently studied during modeling, on torsional oscillation/stick-slip is also studied. The influences of different rock strength on rate of penetration (ROP) considering the drilling parameters have also been studied. The results show the same trend as observed in fields.


Author(s):  
Md. Mejbahul Sarker ◽  
D. Geoff Rideout ◽  
Stephen D. Butt

Lateral whirl vibrations in long sections of horizontal oilwell drillstrings, which are essentially enclosed shafts lying on the low side of the wellbore, are potentially destructive to the bit, pipes and downhole tools. Forward or backward whirl can lead to impact with the borehole, and stick slip and bit bounce can cause tool joint failure, twist-off, and bit damage. A complete deviated drillstring has been modelled by having decoupled axial and torsional segments for the vertical and curved portions, and nonlinear three-dimensional multibody segments with lateral vibration in the final horizontal section ending at the bit. The model can predict how axial and torsional bit-rock reactions are propagated to the surface, and the role that lateral vibration near the bit plays in exciting those vibrations and stressing components in the bottom-hole-assembly. The proposed model includes the mutual dependence of these vibrations, which arises due to bit-rock interaction and friction dynamics between the drillstring and wellbore wall.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


2021 ◽  
Author(s):  
Shilin Chen ◽  
Chris Propes ◽  
Curtis Lanning ◽  
Brad Dunbar

Abstract In this paper we present a new type of vibration related to PDC bits in drilling and its mitigation: a vibration coupled in axial, lateral and torsional directions at a high common frequency (3D coupled vibration). The coupled frequency is as high as 400Hz. 3D coupled vibration is a new dysfunction in drilling operation. This type of vibration occurred more often than stick-slip vibration. Evidences reveal that the coupled frequency is an excitation frequency coming from the bottom hole pattern formed in bit/rock interaction. This excitation frequency and its higher order harmonics may excite axial resonance and/or torsional resonance of a BHA. The nature of 3D coupled vibration is more harmful than low frequency stick-slip vibration and high frequency torsional oscillation (HFTO). The correlation between the occurrence of 3D coupled vibration and bit design characteristics is studied. Being different from prior publications, we found the excitation frequency is dependent on bit design and the occurrence of 3D coupled vibration is correlated with bit design characteristics. New design guidlines have been proposed to reduce or to mitigate 3D coupled vibration.


Author(s):  
Ya. M. Kochkodan ◽  
A.I. Vasko

The article presents the main factors affecting the buckling when drilling vertical wells. The authors study analytically the effect of the weight on the bit and the force of the interaction of a drill string with a borehole wall using a uniform-sized arrangement of the bottom-hole assembly and the borehole wall which is located in a deviated wellbore when drilling in isotropic rocks in case the drilling direction coincides with the direction of the force acting on the bit. Differential equations of the elastic axis of the drill string are worked out. The solutions of these equations have given nondimensional dependences between the technological parameters. The authors have obtained the graphical dependences of the distance from the bit to the “drill string - borehole wall” contact point and the normal reaction of the bottom to the bit and the “drill string - borehole wall” clearance. The dependence for identifying the drilling anisotropy index in oblique beds is obtained. An interrelation between the anisotropy drilling index, the zenith angle, the bedding angle, the bottom-hole assembly, the borehole dimensions and the axial weight on the bit has been established. The authors have studied analytically the effect of the weight on the bit and the force of the “drill string - borehole wall” interaction, when installing the centralizer to the bottom-hole assembly. The differential equations of the elastic axis of the drill string with the centralizer in the bottom-hole assembly are obtained. It is established that with the increase in the axial weight on the bit and the “drill collars - borehole wall” clearance, the distance from the bit to the contact point of the borehole wall decreases; whereas with the increase of the deviation angle and the clearance, the pressure force of the column on the walls increases. It has also been established that the anisotropy drilling index reduces the distance from the bit to the point contact both in a slick BHA and in the bottom hole assembly with the centralizer. The presence of a centralizer in the bottom hole assembly increases the distance from the bit to the contact point between the string and the borehole wall, makes it possible to increase the weight on the bit without the risk of increasing a deviation angle.


Author(s):  
Kenneth Bhalla ◽  
Lixin Gong ◽  
George McKown

A state of the art windows graphical user interface (GUI) program has been developed to predict and design the bottom-hole assembly (BHA) performance for drilling. The techniques and algorithms developed in the program are based upon those developed by Lubinski and Williamson. The BHA program facilitates in conducting parametric studies, and in making field decisions for optimal performance. The input parameters may include: formation class, dip angle, hole size, drill collar size, number of stabilizers, stabilizer spacing. The program takes into consideration bit-formation characteristics and interaction, drill collar sizes, square collars, shock absorbers, MWD tools, reamer tools, directional tools, rotary steerable systems etc. The output may consist of hole curvature (build up or drop rate), hole angle, weight on bit and is presented in drilling semantics. Additionally, the program can perform mechanical analyses and solve for the bending moments and reactions forces. Moreover, the program has the capability to predict the wellpath using a drill ahead algorithm. The program consists of a mathematical model which makes assumptions of 2-D, static, constant hole curvature resulting in a robust computationally efficient tool that produces rapid reliable results in the field.


Author(s):  
Mohammed F Al Dushaishi ◽  
Mortadha T Alsaba ◽  
Ahmed K Abbas ◽  
Tariq Tashtoush

Drillstring vibration is known to cause failures of drilling equipment, including the drill bit. In particular, stick-slip vibration has been known for causing premature failure of the drill bit, hence resulting in reducing the rate of penetration. With dual reaming while drilling, cutting forces are acting on the drillstring due to the simultaneous contact of the reamer and the drill bit. Field studies have shown dramatic changes in the dynamics of the bottom hole assembly due to the dual cutting actions. This paper investigates the dynamics of bottom hole assembly for dual reaming and drilling operation, with emphasis on stick-slip vibrations due to the reamer and the bit contact with the formation. A coupled vibration model representing the drillstring was created to simulate the stick-slip vibrations caused by the bit and reamer interactions using the finite element approach. The numerical analysis showed an elevated stick-slip vibration due to the dual-action of the reamer and the bit. Sensitivity analysis indicated that the cutter aggressiveness for the bit and the reamer are the most significant parameters affecting stick-slip behavior.


1985 ◽  
Vol 107 (1) ◽  
pp. 138-141 ◽  
Author(s):  
D. W. Dareing

Drillstring vibrations are generally considered to be detrimental to downhole drilling equipment because they produce cyclic or fatigue loading. Tool joint failures, tubular washouts, and bit breakage are often fatigue related. On the positive side, dynamic forces applied to roller cone rock bits have the potential to increase penetration rate. This paper quantifies the available vibration energy at the bit and shows how to control the level of energy through bottom hole assembly design and rotary speed.


2019 ◽  
pp. 30-38
Author(s):  
Rasul M. Aliyev ◽  
Shamil M. Kurbanov ◽  
Temirlan M. Umariev

The issue of vertical wells curvature is important, especially when conducting wells in complex geological conditions of drilling, due to the increasing depth of the wells and the corresponding rise in the cost of drilling. The cause of this circumstance lies in the large time and financial costs while flattening of the bent wells. Moreover, it should be noted that during the subsequent drilling of a curved well the risk of key-seating and the corresponding complications increases. That is why large oil field service companies and drilling enterprises are paying more and more attention to solving the problem of vertical wells curvature. This article is devoted to investigation the effect of rotation of the drill string on the deflecting force on the bit while drilling a vertical well in a rotary way. We suggest using of eccentric drill collars for drilling vertical wells in difficult geological conditions. Also, we create an expression for the dynamic milling force on the bit, taking into account the usage of an eccentric drill collar in the composition of bottom-hole assembly.


Author(s):  
Lei Wang ◽  
Jianming Yang ◽  
Stephen Butt ◽  
Hongyuan Qiu

A dynamic bottom hole assembly (BHA) model is built with finite element method (FEM) in this paper. This model is used for evaluation the influence of externally added vibration to the BHA system. With this dynamic model along with a general bit-rock interaction formula, the BHA’s motion in axial and torsional directions are examined. Parametric study is carried out by varying the parameters of the applied vibration force, including the mean value, amplitude, angular frequency, and the location of this force excitation. The simulation results indicate that externally applied vibration force is indeed able to improve drilling performance. In particular, the mean value and amplitude of the applied force have a almost linear relation with ROP and WOB. The stresses distributions along BHA are investigated as well.


Sign in / Sign up

Export Citation Format

Share Document