scholarly journals A Global-Local Damage Assessment Methodology for Impact Damage on Offshore Wind Turbine Blades During Lifting Operations

Author(s):  
Amrit Shankar Verma ◽  
Philipp Ulrich Haselbach ◽  
Nils Petter Vedvik ◽  
Zhen Gao

Lifting the latest generation offshore wind turbines using floating crane vessels is extremely challenging. This comes with an elevated risk of blades impacting the tower or surrounding structures due to excessive crane tip motions from wave induced vessel motions. The wind turbine blades are primarily made of composite materials and thus are extremely vulnerable to impact loads causing complex damages and failure modes. One of the most critical damage type for wind turbine blades is delamination because delaminations cannot always be visually detected but can cause significant strength and stiffness reductions. An explicit structural response based approach was proposed in the previous work which is used to derive response based operational limits for single blade lifting operation using floating vessels considering probability of contact/impact and damages in the blade. An assessment of such impact induced damages on the blade was mentioned which includes modelling and predicting damages in the blade for different contact scenarios representing lifting operations in different sea states along with post impact residual strength estimation. This would require an efficient damage assessment methodology which can be utilized in practice with acceptable accuracy along with a reasonable computational cost. In this work, a simplified global-local based damage assessment methodology is presented. The paper focusses on ’shell-to-solid submodelling’ based impact damage prediction along with a brief outline of ’shell-solid coupling’ based residual strength study. The paper further presents the submodelling technique for impact investigations on DTU 10 MW blade section for a case when a projectile impacts the leading edge. Intraply damage mode based on Hashin failure criteria and Puck’s action plane theory was utilized as VUMAT in Abaqus-Explicit along with surface based cohesive behavior to model the inter-laminar failure mode. Finally, the damages and failure modes in the blade including impact induced delaminations are reported.

Author(s):  
M. H. Keegan ◽  
D. H. Nash ◽  
M. M. Stack

The effects of rain and hail erosion and impact damage on the leading edge of offshore wind turbine blades have been investigated. A literature review was conducted to establish the effects of exposure to these conditions and also to investigate the liquid impact phenomena and their implications for leading edge materials. The role of Explicit Dynamics software modelling in simulating impact events was then also established. Initial rain impact modelling is then discussed with the results showing good agreement with theoretical predictions both numerically and with respect to the temporal and spatial development of the impact event. Future development of the rain model and a proposed hail model are then detailed. Planned rain impact and erosion testing work is addressed which will be used to validate, inform and compliment the ongoing modelling efforts.


2021 ◽  
Vol 35 (4) ◽  
pp. 544-553
Author(s):  
Yan-fei Chen ◽  
Zhi-peng Zang ◽  
Shao-hua Dong ◽  
Chuan Ao ◽  
Hao Liu ◽  
...  

2015 ◽  
Vol 39 (4) ◽  
pp. 419-436 ◽  
Author(s):  
Phillip W. Richards ◽  
D. Todd Griffth ◽  
Dewey H. Hodges

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
M. Tarfaoui ◽  
O. R. Shah ◽  
M. Nachtane

In order to obtain an optimal design of composite offshore wind turbine blade, take into account all the structural properties and the limiting conditions applied as close as possible to real cases. This work is divided into two stages: the aerodynamic design and the structural design. The optimal blade structural configuration was determined through a parametric study by using a finite element method. The skin thickness, thickness and width of the spar flange, and thickness, location, and length of the front and rear spar web were varied until design criteria were satisfied. The purpose of this article is to provide the designer with all the tools required to model and optimize the blades. The aerodynamic performance has been covered in this study using blade element momentum (BEM) method to calculate the loads applied to the turbine blade during service and extreme stormy conditions, and the finite element analysis was performed by using abaqus code to predict the most critical damage behavior and to apprehend and obtain knowledge of the complex structural behavior of wind turbine blades. The approach developed based on the nonlinear finite element analysis using mean values for the material properties and the failure criteria of Hashin to predict failure modes in large structures and to identify the sensitive zones.


2019 ◽  
Vol 27 (8) ◽  
pp. 443-475 ◽  
Author(s):  
Arash Dashtkar ◽  
Homayoun Hadavinia ◽  
M Necip Sahinkaya ◽  
Neil A Williams ◽  
Samireh Vahid ◽  
...  

Wind blades are the most expensive parts of wind turbines made from fibre-reinforced polymer composites. The blades play a critical role on the energy production, but they are prone to damage like any other composite components. Leading edge (LE) erosion of the wind turbine blades is one of the common damages, causing a reduction in the annual energy production especially in offshore wind turbine farms. This erosion can be caused by rain, sand and flying solid particles. Coating the blade against erosion using appropriate materials can drastically reduce these losses and hence is of great interest. The sol–gel technique is a convenient method to manufacture thin film coatings, which can protect the blades against the rain erosion, while having negligible effect on the weight of the blades. This article provides an extensive review of the liquid erosion mechanism, water erosion testing procedures and the contributing factors to the erosion of the LE of wind turbine blades. Techniques for improving the erosion resistance of the LE using carbon nanotubes and graphene nano-additives are also discussed.


Sign in / Sign up

Export Citation Format

Share Document