Effects of Platform Mounting Orientations on the Long-Term Performance of a Semisubmersible Wind Turbine

Author(s):  
Shengtao Zhou ◽  
Chao Li ◽  
Yiqing Xiao ◽  
Frank Lemmer ◽  
Wei Yu ◽  
...  

Abstract Due to the non-fully-symmetrical configuration, the platform laying angle of semi-submersible floating offshore wind turbines relative to wind/wave load directions has a noticeable influence on the dynamics characteristics of the whole structure, which indicates that the platform mounting orientation should be carefully considered before installation at sea. The directionality effects of short-term wind/wave loads had been discussed in previous studies, which are, however, insufficient to make a full understanding of the directionality impacts. In our study, based on a 25-year met-ocean database, long-term analysis is carried out by means of an efficient frequency-domain model with eight degrees of freedom. The nonlinear quantities such as aerodynamic loads, aerodynamic damping and mooring stiffness are derived from the time-domain simulation tool FAST, serving as a preprocessing database for the frequency-domain model. A case study is carried out by comparing the long-term responses of a Y-shape semi-submersible floating wind turbine in four mounting orientations. Significant differences can be seen. The platform mounted in the most unfavorable orientation tends to suffer from larger peak nacelle acceleration, which would increase the loads and cause higher tower base fatigue damage. These findings highlight the importance of platform mounting orientations and can serve as a basis for the installation of semi-submersible floating wind turbines.

Author(s):  
Daniel Milano ◽  
Christophe Peyrard ◽  
Matteo Capaldo

Abstract The numerical fatigue analysis of floating offshore wind turbines (FOWTs) must account for the environmental loading over a typical design life of 25 years, and the stochastic nature of wind and waves is represented by design load cases (DLCs). In this statistical approach, combinations of wind speeds and directions are associated with different sea states, commonly defined via simplified wave spectra (Pierson-Moskowitz, JONSWAP), and their probability of occurrence is identified based on past observations. However, little is known about the difference between discretizing the wind/wave direction bins into (e.g.) 10deg bins rather than 30deg bins, and the impact it has on FOWT analyses. In addition, there is an interest in identifying the parameters that best represent real sea states (significant wave height, peak period) and wind fields (profile, turbulence) in lumped load cases. In this context, the aim of this work is to better understand the uncertainties associated to wind/wave direction bin size and to the use of metocean parameters as opposed to real wind and sea state conditions. A computational model was developed in order to couple offshore wind turbine models with realistic numerical metocean models, referred to as numerical prototype due to the highly realistic wind/wave conditions in which it operates. This method allows the virtual installation of FOWTs anywhere within a considered spatial domain (e.g. the Mediterranean Sea or the North Sea) and their behaviour to be evaluated in measured wind and modelled wave conditions. The work presented in this paper compares the long-term dynamic behaviour of a tension-leg platform (TLP) FOWT design subject to the numerical prototype and to lumped load cases with different direction bin sizes. Different approaches to representing the wind filed are also investigated, and the modelling choices that have the greatest impact on the fidelity of lumped load cases are identified. The fatigue analysis suggests that 30deg direction bins are sufficient to reliably represent long-term wind/wave conditions, while the use of a constant surface roughness length (as suggested by the IEC standards) seems to significantly overestimate the cumulated damage on the tower of the FOWT.


Author(s):  
Sébastien Gueydon ◽  
Koert Lindenburg ◽  
Feike Savenije

For the design of a floating wind turbine it is necessary to take the loading due to the wind, wave and current in equal consideration. The PHATAS computer program from ECN (Energy research Centre of the Netherlands) is a time-domain aero-elastic simulation program, that accounts for the complete mutual interaction of unsteady rotor aerodynamics, structural dynamics of the rotor blades and tower, and interaction with the turbine controller under influence of turbulent wind and wave loading for fixed wind turbines. The aNySIM computer program from MARIN is a multi rigid body time domain model that accounts for wave loadings, current loadings, wind loadings, floating body dynamics, mooring dynamics. The coupled computer program aNySIM / PHATAS accounts for all loadings acting on a floating wind turbine and its response whereas PHATAS can only be used for fixed wind turbines onshore and offshore. This paper reports on the dynamic coupling between PHATAS and aNySIM. As a typical case study, the controller for floating offshore wind turbines is evaluated. This new tool has been used to repeat phase IV of the Offshore Code Comparison Collaboration (OC3) within IEA Wind Task 23, regarding floating wind turbine modelling. The results of these simulations are presented in this paper.


Author(s):  
Luigia Riefolo ◽  
Fernando del Jesus ◽  
Raúl Guanche García ◽  
Giuseppe Roberto Tomasicchio ◽  
Daniela Pantusa

The design methodology for mooring systems for a spar buoy wind turbine considers the influence of extreme events and wind/wave misalignments occurring in its lifetime. Therefore, the variety of wind and wave directions affects over the seakeeping and as a result the evaluation of the maxima loads acting on the spar-buoy wind turbine. In the present paper, the importance of wind/wave misalignments on the dynamic response of spar-type floating wind turbine [1] is investigated. Based on standards, International Electrotechnical Commission IEC and Det Norske Veritas DNV the design of position moorings should be carried out under extreme wind/wave loads, taking into account their misalignments with respect to the structure. In particular, DNV standard, in ‘Position mooring’ recommendations, specifies in the load cases definition, if site specific data is not available, to consider non-collinear environment to have wave towards the unit’s bow (0°) and wind 30° relative to the waves. In IEC standards, the misalignment of the wind and wave directions shall be considered to design offshore wind turbines and calculate the loads acting on the support structure. Ultimate Limit State (ULS) analyses of the OC3-Hywind spar buoy wind turbine are conducted through FAST code, a certified nonlinear aero-hydro-servo-elastic simulation tool by the National Renewable Energy Laboratory’s (NREL’s). This software was developed for use in the International Energy Agency (IEA) Offshore Code Comparison Collaborative (OC3) project, and supports NREL’s offshore 5-MW baseline turbine. In order to assess the effects of misaligned wind and wave, different wind directions are chosen, maintaining the wave loads perpendicular to the structure. Stochastic, full-fields, turbulence simulator Turbsim is used to simulate the 1-h turbulent wind field. The scope of the work is to investigate the effects of wind/wave misalignments on the station-keeping system of spar buoy wind turbine. Results are presented in terms of global maxima determined through mean up-crossing with moving average, which, then, are modelled by a Weibull distribution. Finally, extreme values are estimated depending on global maxima and fitted on Gumbel distribution. The Most Probable Maximum value of mooring line tensions is found to be influenced by the wind/wave misalignments. The present paper is organized as follows. Section ‘Introduction’, based on a literature study, gives useful information on the previous studies conducted on the wind/wave misalignments effects of floating offshore wind turbines. Section ‘Methodology’ describes the applied methodology and presents the spar buoy wind turbine, the used numerical model and the selected environmental conditions. Results and the corresponding discussion are given in Section ‘Results and discussion’ for each load case corresponding to the codirectional and misaligned wind and wave loads. Results are presented and discussed in time and frequency domains. Finally, in Section ‘Conclusion’ some conclusions are drawn.


2018 ◽  
Vol 8 (11) ◽  
pp. 2314 ◽  
Author(s):  
Yin Zhang ◽  
Bumsuk Kim

Accurate prediction of the time-dependent system dynamic responses of floating offshore wind turbines (FOWTs) under aero-hydro-coupled conditions is a challenge. This paper presents a numerical modeling tool using commercial computational fluid dynamics software, STAR-CCM+(V12.02.010), to perform a fully coupled dynamic analysis of the DeepCwind semi-submersible floating platform with the National Renewable Engineering Lab (NREL) 5-MW baseline wind turbine model under combined wind–wave excitation environment conditions. Free-decay tests for rigid-body degrees of freedom (DOF) in still water and hydrodynamic tests for a regular wave are performed to validate the numerical model by inputting gross system parameters supported in the Offshore Code Comparison, Collaboration, Continued, with Correlations (OC5) project. A full-configuration FOWT simulation, with the simultaneous motion of the rotating blade due to 6-DOF platform dynamics, was performed. A relatively heavy load on the hub and blade was observed for the FOWT compared with the onshore wind turbine, leading to a 7.8% increase in the thrust curve; a 10% decrease in the power curve was also observed for the floating-type turbines, which could be attributed to the smaller project area and relative wind speed required for the rotor to receive wind power when the platform pitches. Finally, the tower-blade interference effects, blade-tip vortices, turbulent wakes, and shedding vortices in the fluid domain with relatively complex unsteady flow conditions were observed and investigated in detail.


2018 ◽  
Vol 3 (2) ◽  
pp. 693-712 ◽  
Author(s):  
Antonio Pegalajar-Jurado ◽  
Michael Borg ◽  
Henrik Bredmose

Abstract. A model for Quick Load Analysis of Floating wind turbines (QuLAF) is presented and validated here. The model is a linear, frequency-domain, efficient tool with four planar degrees of freedom: floater surge, heave, pitch and first tower modal deflection. The model relies on state-of-the-art tools from which hydrodynamic, aerodynamic and mooring loads are extracted and cascaded into QuLAF. Hydrodynamic and aerodynamic loads are pre-computed in WAMIT and FAST, respectively, while the mooring system is linearized around the equilibrium position for each wind speed using MoorDyn. An approximate approach to viscous hydrodynamic damping is developed, and the aerodynamic damping is extracted from decay tests specific for each degree of freedom. Without any calibration, the model predicts the motions of the system in stochastic wind and waves with good accuracy when compared to FAST. The damage-equivalent bending moment at the tower base is estimated with errors between 0.2 % and 11.3 % for all the load cases considered. The largest errors are associated with the most severe wave climates for wave-only conditions and with turbine operation around rated wind speed for combined wind and waves. The computational speed of the model is between 1300 and 2700 times faster than real time.


2021 ◽  
Author(s):  
Alessandro Fontanella ◽  
Marco Belloli

Abstract This paper develops a novel feedforward control strategy for reducing structural loads caused by waves in floating offshore wind turbines. The proposed control strategy is based on the inversion of a linear model of the floating wind turbine, and a real-time forecast of the wave obtained from an upstream measurement is utilized to compute a collective pitch control action. Two feedforward controllers are considered: one is designed to cancel the rotor speed oscillations and one to lower the towertop fore-aft shear force. The feedforward control strategies are implemented in a 10MW floating wind turbine, complementing the standard feedback controller for generator speed regulation. Numerical simulations are carried out in FAST, in four operating conditions with realistic wind and waves, proving the proposed feedforward controller effectively mitigates the structural loads caused by waves. In detail, the feedforward action reduces the loads spectra in the frequency range where linear wave is active. The best performance is realized higher winds (the FA force is reduced up to 25% in 22 m/s wind), where the wave excitation is the strongest.


2018 ◽  
Author(s):  
Antonio Pegalajar-Jurado ◽  
Michael Borg ◽  
Henrik Bredmose

Abstract. A model for Quick Load Analysis of Floating wind turbines, QuLAF, is presented and validated here. The model is a linear, frequency-domain, efficient tool with four planar degrees of freedom: platform surge, heave, pitch and tower modal deflection. The model relies on state-of-the-art tools from which hydrodynamic, aerodynamic and mooring loads are extracted and cascaded into QuLAF. Hydrodynamic and aerodynamic loads are precomputed in WAMIT and FAST respectively, while the mooring system is linearized around the equilibrium position for each wind speed using MoorDyn. An approximate approach to viscous hydrodynamic damping is developed, and the aerodynamic damping is extracted from decay tests specific for each degree of freedom. Without any calibration, the model predicts the motions of the system in stochastic wind and waves with good accuracy when compared to FAST. The damage-equivalent bending moment at the tower bottom is estimated with errors between 0.2 % and 11.3 % for all the load cases considered. The largest errors are associated with the most severe wave climates for wave-only conditions and with turbine operation around rated wind speed for combined wind and waves. The computational speed of the model is between 1300 and 2700 times faster than real-time.


2018 ◽  
Vol 6 (4) ◽  
pp. 118 ◽  
Author(s):  
Frank Lemmer ◽  
Wei Yu ◽  
Po Cheng

Methods for coupled aero-hydro-servo-elastic time-domain simulations of Floating Offshore Wind Turbines (FOWTs) have been successfully developed. One of the present challenges is a realistic approximation of the viscous drag of the wetted members of the floating platform. This paper presents a method for an iterative response calculation with a reduced-order frequency-domain model. It has heave plate drag coefficients, which are parameterized functions of literature data. The reduced-order model does not represent more than the most relevant effects on the FOWT system dynamics. It includes first-order and second-order wave forces, coupled with the wind turbine structural dynamics, aerodynamics and control system dynamics. So far, the viscous drag coefficients are usually defined as constants, independent of the load cases. With the computationally efficient frequency-domain model, it is possible to iterate the drag, such that it fits to the obtained amplitudes of oscillation of the different members. The results show that the drag coefficients vary significantly across operational load conditions. The viscous drag coefficients converge quickly and the method is applicable for concept-level design studies of FOWTs with load case-dependent drag.


Sign in / Sign up

Export Citation Format

Share Document