Risk Assessment in Offshore Salt Caverns to Store CO2

Author(s):  
Marco Aurelio Pestana ◽  
Carlos Henrique Bittencourt Morais ◽  
Alvaro Maia da Costa ◽  
Camila Brandão ◽  
Marcelo Ramos Martins

Abstract Although factual experience of developing offshore salt cavern to CO2 disposal in ultra-deep water is unprecedent, the theme has been gaining relevant attention in Brazil, fueled by the challenges imposed by oil production on the Pre-Salt reservoirs. It is true that some authors have conducted researches related to CO2 disposal on onshore salt caverns, but most of the works regarding salt cavern are related to onshore constructions that are used as methane store to supplement gas consumption during the peak energy demands that historically occurs during the winter season in the North hemisphere. This paper aims to contribute for CO2 disposal research, describing the results obtained from the application of a Preliminary Risk Analysis (PRA) during the conceptual engineering phase of an offshore salt cavern to store CO2 in Brazilian Pre-Salt.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Piyoosh Rautela ◽  
Sushil Khanduri ◽  
Surabhi Kundalia ◽  
Girish Chandra Joshi ◽  
Rahul Jugran

204 persons were killed while two hydropower projects located in close proximity at Rishiganga (13.2 MW), and Tapoban (520 MW) were damaged in Dhauliganga flood of February 7, 2021 in the Indian Himalaya. This incidence occurred during the winter season when the discharge of the glacier fed rivers is minimal, and no rain was experienced in the region around the time of the flood. Despite discharge of the main river, Rishiganga, not involved in the flood due to damming upstream of its confluence with Raunthi Gadhera, based on field evidences massive volume of around 6 million cu m water involved in this flood is attributed to sequential intermittent damming at three different places; (i) Raunthi Gadhera was dammed first in its upper reaches, (ii) Rishiganga river was then dammed to the north of Murunna, and (iii) finally Dhauliganga river was dammed around Rini village to the upstream of its confluence with Rishiganga river. Lacking warning system only enhanced the flood-induced devastation. Legally binding disaster risk assessment regime, together with robust warning generation, and dissemination infrastructure are therefore recommended for all major infrastructure projects.


1998 ◽  
Vol 180 ◽  
pp. 163-167
Author(s):  
Antoon Kuijpers ◽  
Jørn Bo Jensen ◽  
Simon R . Troelstra ◽  
And shipboard scientific party of RV Professor Logachev and RV Dana

Direct interaction between the atmosphere and the deep ocean basins takes place today only in the Southern Ocean near the Antarctic continent and in the northern extremity of the North Atlantic Ocean, notably in the Norwegian–Greenland Sea and Labrador Sea. Cooling and evaporation cause surface waters in the latter region to become dense and sink. At depth, further mixing occurs with Arctic water masses from adjacent polar shelves. Export of these water masses from the Norwegian–Greenland Sea (Norwegian Sea Overflow Water) to the North Atlantic basin occurs via two major gateways, the Denmark Strait system and the Faeroe– Shetland Channel and Faeroe Bank Channel system (e.g. Dickson et al. 1990; Fig.1). Deep convection in the Labrador Sea produces intermediate waters (Labrador Sea Water), which spreads across the North Atlantic. Deep waters thus formed in the North Atlantic (North Atlantic Deep Water) constitute an essential component of a global ‘conveyor’ belt extending from the North Atlantic via the Southern and Indian Oceans to the Pacific. Water masses return as a (warm) surface water flow. In the North Atlantic this is the Gulf Stream and the relatively warm and saline North Atlantic Current. Numerous palaeo-oceanographic studies have indicated that climatic changes in the North Atlantic region are closely related to changes in surface circulation and in the production of North Atlantic Deep Water. Abrupt shut-down of the ocean-overturning and subsequently of the conveyor belt is believed to represent a potential explanation for rapid climate deterioration at high latitudes, such as those that caused the Quaternary ice ages. Here it should be noted, that significant changes in deep convection in Greenland waters have also recently occurred. While in the Greenland Sea deep water formation over the last decade has drastically decreased, a strong increase of deep convection has simultaneously been observed in the Labrador Sea (Sy et al. 1997).


2021 ◽  
Vol 13 (2) ◽  
pp. 826
Author(s):  
Meiling Zhou ◽  
Xiuli Feng ◽  
Kaikai Liu ◽  
Chi Zhang ◽  
Lijian Xie ◽  
...  

Influenced by climate change, extreme weather events occur frequently, and bring huge impacts to urban areas, including urban waterlogging. Conducting risk assessments of urban waterlogging is a critical step to diagnose problems, improve infrastructure and achieve sustainable development facing extreme weathers. This study takes Ningbo, a typical coastal city in the Yangtze River Delta, as an example to conduct a risk assessment of urban waterlogging with high-resolution remote sensing images and high-precision digital elevation models to further analyze the spatial distribution characteristics of waterlogging risk. Results indicate that waterlogging risk in the city proper of Ningbo is mainly low risk, accounting for 36.9%. The higher-risk and medium-risk areas have the same proportions, accounting for 18.7%. They are followed by the lower-risk and high-risk areas, accounting for 15.5% and 9.6%, respectively. In terms of space, waterlogging risk in the city proper of Ningbo is high in the south and low in the north. The high-risk area is mainly located to the west of Jiangdong district and the middle of Haishu district. The low-risk area is mainly distributed in the north of Jiangbei district. These results are consistent with the historical situation of waterlogging in Ningbo, which prove the effectiveness of the risk assessment model and provide an important reference for the government to prevent and mitigate waterlogging. The optimized risk assessment model is also of importance for waterlogging risk assessments in coastal cities. Based on this model, the waterlogging risk of coastal cities can be quickly assessed, combining with local characteristics, which will help improve the city’s capability of responding to waterlogging disasters and reduce socio-economic loss.


Author(s):  
F. Wittmann ◽  
C. Schmitt ◽  
F. Adam ◽  
P. Dierken

AbstractThe Energyhub@Sea concept is one of the four research applications of the Space@Sea project funded by the EU’s Horizon 2020 research program (GA number: 774253). The focus of this paper is the evaluation of the energy demands of an energy self-sufficient maintenance platform at the location of Helgoland in the North Sea. In view of this, a standardized modular floater was developed as an offshore wind operation and maintenance base, which in the following paper is referred to as an O&M hub. The O&M hub is intended to be equipped with accommodation facilities and various renewable energy infrastructure as well as spare parts logistics, enabling the platform to perform maintenance of offshore gearless wind turbines with a capacity of up to 10 MW. To be energy self-sustaining, an energy supply system for the hub was developed and simulated at a resolution of ten minutes by means of the Top-Energy simulation software, a commercial software tool. As a basis for the simulation, an approach for the automated determination of flexible load profiles, in resolutions of up to ten minutes was developed. This load profile generator creates load profiles on the basis of environmental conditions, technical characteristics, and expected behaviors of the inhabitants. On the basis of the generated load profiles, a first layout (referred to as baseline scenario) for the different components of the energy system was evaluated and tested through simulation. In a second step, three optimization scenarios were developed and simulated with regards to the financial feasibility of the Energyhub.


Sedimentology ◽  
2002 ◽  
Vol 49 (4) ◽  
pp. 669-695 ◽  
Author(s):  
Russell B. Wynn ◽  
Philip P. E. Weaver ◽  
Douglas G. Masson ◽  
Dorrik A. V. Stow

Author(s):  
Sirous F. Yasseri ◽  
Jake Prager

This paper describes a recurrence law for explosions. The proposed recurrence law fits quite well to the historic explosion data in residential buildings as well as to the data on offshore installations in the North Sea. Generally quantified explosion risk assessment is performed for offshore installations, since it is believed historic data does not correspond to a specific installation and it may not be appropriate for use in performance based explosion engineering, which may in itself require realistic load description of explosion recurrence. The goodness-of-fit of the model for explosion occurrence data obtained using the quantified risk assessment method is also discussed. The paper then introduces the concept of performance-based design, which is an attempt to design structures with predictable performance under explosion loading. Performance objectives such as life safety, collapse prevention, or immediate resumption of operation are used to define the state of an installation following a design explosion. The recurrence law is then used to associate a level of explosion load to each limit state using a desirable level of probability of exceedance during the installations life time.


2021 ◽  
Author(s):  
Catherine Drinkorn ◽  
Jan Saynisch-Wagner ◽  
Gabriele Uenzelmann-Neben ◽  
Maik Thomas

<p>Ocean sediment drifts contain important information about past bottom currents but a direct link from the study of sedimentary archives to ocean dynamics is not always possible. To close this gap for the North Atlantic, we set up a  new coupled Ice-Ocean-Sediment Model of the entire Pan-Arctic region. In order to evaluate the potential dynamics of the model, we conducted decadal sensitivity experiments. In our model contouritic sedimentation shows a significant sensitivity towards climate variability for most of the contourite drift locations in the model domain. We observe a general decrease of sedimentation rates during warm conditions with decreasing atmospheric and oceanic gradients and an extensive increase of sedimentation rates during cold conditions with respective increased gradients. We can relate these results to changes in the dominant bottom circulation supplying deep water masses to the contourite sites under different climate conditions. A better understanding of northern deep water pathways in the Atlantic Meridional Overturning Circulation (AMOC) is crucial for evaluating possible consequences of climate change in the ocean.</p>


2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Lina Zhai ◽  
Shiming Wan ◽  
Christophe Colin ◽  
Debo Zhao ◽  
Yuntao Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document