Making Sense of Section XI Visual Examination Requirements

Author(s):  
N. Roger Bentley

This paper will review the development of the visual examination requirements of Section XI of the ASME Boiler and Pressure Vessel Code. The original visual requirements were ‘one visual exam fits all’ – to detect physical damage, physical displacement, and evidence of leakage. Resolution requirements were those of Section V of the Code. These requirements evolved over the next 20 years to become several specific types of requirements, each with specific resolution, illumination, and proximity restraints. Review indicated that these separate visual rules are now converging. This paper provides recommendations for revisions to Section XI that consolidate and simplify these requirements.

2019 ◽  
Vol 893 ◽  
pp. 1-5 ◽  
Author(s):  
Eui Soo Kim

Pressure vessels are subjected to repeated loads during use and charging, which can causefine physical damage even in the elastic region. If the load is repeated under stress conditions belowthe yield strength, internal damage accumulates. Fatigue life evaluation of the structure of thepressure vessel using finite element analysis (FEA) is used to evaluate the life cycle of the structuraldesign based on finite element method (FEM) technology. This technique is more advanced thanfatigue life prediction that uses relational equations. This study describes fatigue analysis to predictthe fatigue life of a pressure vessel using stress data obtained from FEA. The life prediction results areuseful for improving the component design at a very early development stage. The fatigue life of thepressure vessel is calculated for each node on the model, and cumulative damage theory is used tocalculate the fatigue life. Then, the fatigue life is calculated from this information using the FEanalysis software ADINA and the fatigue life calculation program WINLIFE.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Stanley Yokell

This paper describes preparing mockup tubesheet specimens for visual examination using a digital microscope to determine that tube-to-tubesheet joint welds are of the specified size and that expanded joints are satisfactory for the intended purpose. It discusses nondestructive examinations (NDE) of the tubesheets and tube joints intended to assure achieving sufficient tightness and strength to satisfy the uses to which the exchangers will be put. This paper refers to the ASME Boiler and Pressure Vessel Code (Code) paragraphs that apply to tube joint welds and expanded joints including shear load testing when the Code requires it [1]. The discussion also addresses the need for manufacturers to have qualified tube joining procedures and personnel qualified to use the qualified procedures. The work concludes with a summary of ways to assure tube joint tightness and strength.


Author(s):  
Stanley Yokell

This paper describes preparing mockup tubesheet specimens for visual examination using a digital microscope to determine that tube joint welds are of the specified size and that expanded joints are satisfactory for the intended purpose. It discusses nondestructive examinations (NDE) of tubesheets and tube joints intended to assure achieving sufficient tightness and strength to satisfy the uses to which the exchangers will be put. The paper refers to the ASME Boiler and Pressure Vessel Code (Code) paragraphs that apply to tube joint welds and expanded joints including shear load testing when the Code requires it.[1] The discussion also addresses the need for manufacturers to have qualified tube joining procedures and personnel who use the procedures. The work concludes with a summary of ways to assure tube joint tightness and strength.


2020 ◽  
Vol 1 (2) ◽  
pp. 96-106
Author(s):  
Amam Fachrur Rozie

LPG Storage Tank berkapasitas 50 Ton yang telah terinstalasi dan beroperasi sejak tahun 2010 akan dikaji kelayakan dan sisa umur pakai dari pressure vessel tersebut. Metode pengujian yang dipergunakan adalah Non-Destructive Testing (NDT) - Ultrasonic Testing (UT) pada bagian shell dan head untuk mendapatkan nilai actual thickness dari pressure vessel serta dilakukan Visual Examination. Nilai thickness tersebut dipergunakan untuk menganalisis dan mengkalkulasi thickness required (Treq), nilai Corrosion Rate (CR), Maximum Allowable Working Pressure (MAWP) serta umur sisa (Remaining Life) dari LPG Storage Tank tersebut. Dari hasil analisa serta perhitungan maka didapat umur sisa pakai dari LPG Storage Tank kapasitas 50 Ton adalah 18 tahun dengan nilai laju korosi sebesar 0,043 mm/thn


Author(s):  
John A. Trotter

Hemoglobin is the specific protein of red blood cells. Those cells in which hemoglobin synthesis is initiated are the earliest cells that can presently be considered to be committed to erythropoiesis. In order to identify such early cells electron microscopically, we have made use of the peroxidatic activity of hemoglobin by reacting the marrow of erythropoietically stimulated guinea pigs with diaminobenzidine (DAB). The reaction product appeared as a diffuse and amorphous electron opacity throughout the cytoplasm of reactive cells. The detection of small density increases of such a diffuse nature required an analytical method more sensitive and reliable than the visual examination of micrographs. A procedure was therefore devised for the evaluation of micrographs (negatives) with a densitometer (Weston Photographic Analyzer).


Author(s):  
R.J. Mount ◽  
R.V. Harrison

The sensory end organ of the ear, the organ of Corti, rests on a thin basilar membrane which lies between the bone of the central modiolus and the bony wall of the cochlea. In vivo, the organ of Corti is protected by the bony wall which totally surrounds it. In order to examine the sensory epithelium by scanning electron microscopy it is necessary to dissect away the protective bone and expose the region of interest (Fig. 1). This leaves the fragile organ of Corti susceptible to physical damage during subsequent handling. In our laboratory cochlear specimens, after dissection, are routinely prepared by the O-T- O-T-O technique, critical point dried and then lightly sputter coated with gold. This processing involves considerable specimen handling including several hours on a rotator during which the organ of Corti is at risk of being physically damaged. The following procedure uses low cost, readily available materials to hold the specimen during processing ,preventing physical damage while allowing an unhindered exchange of fluids.Following fixation, the cochlea is dehydrated to 70% ethanol then dissected under ethanol to prevent air drying. The holder is prepared by punching a hole in the flexible snap cap of a Wheaton vial with a paper hole punch. A small amount of two component epoxy putty is well mixed then pushed through the hole in the cap. The putty on the inner cap is formed into a “cup” to hold the specimen (Fig. 2), the putty on the outside is smoothed into a “button” to give good attachment even when the cap is flexed during handling (Fig. 3). The cap is submerged in the 70% ethanol, the bone at the base of the cochlea is seated into the cup and the sides of the cup squeezed with forceps to grip it (Fig.4). Several types of epoxy putty have been tried, most are either soluble in ethanol to some degree or do not set in ethanol. The only putty we find successful is “DUROtm MASTERMENDtm Epoxy Extra Strength Ribbon” (Loctite Corp., Cleveland, Ohio), this is a blue and yellow ribbon which is kneaded to form a green putty, it is available at many hardware stores.


Making Media ◽  
2019 ◽  
pp. 193-206
Author(s):  
Arne H. Krumsvik ◽  
Stefania Milan ◽  
Niamh Ní Bhroin ◽  
Tanja Storsul
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document