In-Plane Parametric Vibrations of Curved Bellows Subjected to Oscillating Internal Fluid Pressure Excitation
This paper deals with the theoretical stability analysis of in-plane parametric vibrations of a curved bellows subjected to periodic internal fluid pressure excitation. The curved bellows studied in this paper are fixed at both ends rigidly, and are excited by the periodic internal fluid pressure. In the theoretical stability analysis, the governing equation of the curved bellows subjected to periodic internal fluid pressure excitation is derived as a Mathieu’s equation by using finite element method (FEM). Natural frequencies of the curved bellows are examined and stability maps are presented for in-plane parametric instability. It is found that the natural frequencies of the curved bellows decrease with increasing the static internal fluid pressure and buckling occurs due to high internal fluid pressure. It is also found that two types of parametric vibrations, longitudinal and transverse vibrations, occur to the curved bellows in-plane direction due to the periodic internal fluid pressure excitation. Moreover, effects of axis curvature on the parametric instability regions are examined theoretically.