Development of a Testing System for Piezoelectric Wafer Active Sensors Exposed to Extreme Temperatures

Author(s):  
William Roth ◽  
Banibrata Poddar ◽  
Jingjing Bao

Piezoelectric Wafer Active Sensors (PWAS) are a viable option for monitoring the structural integrity of pressure vessels and piping systems. They are inexpensive, small and unobtrusive sensors which can be permanently attached to structures for long term monitoring without interfering with operations, such as operating in areas with limited head space. PWAS are used to inspect the structure through several methods which include; pitch catch or pulse echo wave propagation, and electromechanical impedance spectroscopy. Since the PWAS could be exposed to a range of environmental and/or operating conditions while attached to the structure, the change in the properties and electromechanical characteristics of the sensor must be known at a given condition. Accordingly, there is a need for a testing system which can measure the PWAS properties while exposing the sensor to a wide range of temperatures. The focus in this paper is on elevated temperatures, but the same methodology could be used for low temperature or environmental testing. The requirements which were imposed on the design include: providing an electrical connection from each electrode to the exterior of an industrial oven; allow the sensor to expand and contract both in plane and out of plane; withstand an extended duration at elevated temperatures; the equipment must not influence the measured quantities. The challenges include how to place the sensor in an oven and make electrical contact while allowing free motion, how to implement wiring and electrical connections at elevated temperatures, how to allow the thermal expansion of components and account for thermal mismatching, and how to maintain electrical isolation of the two electrodes. This paper discusses how these requirements were met and challenges overcome, as well as experimental validation of the system.

Author(s):  
Bin Lin ◽  
Matthieu Gresil ◽  
Victor Giurgiutiu ◽  
Adrian E. Mendez-Torres

The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS) such as pressure vessels and piping (PVP) in a nuclear reactor. Technologies for the diagnosis and prognosis of PVP systems can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure. Recently investigated piezoelectric wafer active sensors (PWAS) open the possibilities to develop and deploy such system. Piezoelectric wafer active sensors are widely used in structural health monitoring (SHM) to determine the presence of cracks, delaminations, disbonds, and corrosion. Durability and survivability of PWAS under environmental exposures has been tested before. However the irradiation effects, pertinent to nuclear facilities for PWAS, have not been studied yet. This paper presents a study on PWAS that exposed to high energy gamma radiation. PWAS were irradiated using a Co-60 gamma source in an irradiator with different exposure times. The dose rate and total absorbed dose were calculated using Monte Carlo simulations (MCNPX). The PWAS material properties, electrical contact change were characterized through a series of tests. The electro-mechanical impedance spectrum (EMIS) of PWAS was measured before and after irradiation. This study not only provides the fundamental understanding of the PWAS irradiation survivability but also tests the potential of PWAS as irradiation sensors for nuclear applications.


Author(s):  
Lingyu Yu ◽  
Victor Giurgiutiu ◽  
Jingjiang Wang ◽  
Yong-June Shin

In this paper, we present a multiple mode sensing methodology to detect active corrosion in aluminum structure utilizing the broadband piezoelectric wafer active sensors. This method uses ultrasonic Lamb wave complemented with the electromechanical impedance measurement to detect, quantify, and localize the corrosion progression in plate-like structures. The ultimate objective of this research is to develop in-situ multimode sensing system for the monitoring and prediction of critical aerospace structures that can be used during in-service period, recording and monitoring the changes over time. The test experiments were conducted on an aluminum plate installed with a five sensor network using 7-mm piezoelectric wafer active sensors. The corrosion was emulated as material loss of an area of 50mm 38mm on the other surface of the plate. Detection of corrosion and its growth was first conducted using the Lamb wave method in pitch-catch mode. The corroded area resulted in a thickness loss on the Lamb wave propagation and caused the amplitude and phase changes in the structural responses. The experimental data was first evaluated by the statistics-based damage indicator using root mean square deviation. Though the damage indicator is able to detect the presence of the corrosion and identify the corrosion location quantitatively, it failed in giving the right indication of corrosion development. A more corrosion signal processing based method, the cross time-frequency analysis, was proposed and used to analyze the phase characteristics of the data set. This cross time-frequency analysis was found more reliable and precise for detecting the corrosion progression compared with the damage indicator method.


Author(s):  
Linlin Ma ◽  
Xiaoyi Sun ◽  
Bin Lin ◽  
Lingyu Yu

This paper discusses the temperature effects of using piezoelectric wafer active sensors (PWAS) technologies for structural health monitoring (SHM) in pressure vessels and piping (PVP) applications, e.g. dry cast storage system (DCSS). The research into monitoring of DCSS health has experienced a dramatic increase following the issuance of the Blue Ribbon Commission (BRC) on America’s Nuclear Future Final Report in 2012. The interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. PWAS have emerged as one of the major SHM technologies developed particularly for generating and receiving acousto-ultrasonic waves for the purpose of continuous monitoring and diagnosis. Durability and survivability of PWAS under temperature effects was first tested in experiments. The analytical model of PWAS based sensor and sensing system under temperature effects was then developed. This paper compared the analytical model and experimental results of PWAS under temperature changes. Since the environmental variability of a sensing system includes changes in both the sensors and the sensing methodology including acoustic emission (AE), guided ultrasonic waves (GUW), and electro-mechanical impedance spectroscopy (EMIS), we also performed several temperature exposure with different PWAS sensing configurations under a controlled oven. The potential of PWAS for DCSS applications has been explored. The paper ends with conclusions and suggestions for further work.


Author(s):  
Lingyu Yu ◽  
Victor Giurgiutiu ◽  
Yuh Chao ◽  
Patrick Pollock

Pipelines are important infrastructures in petroleum and gas industries which are vital to the national economy. They are typically subjected to corrosion inside of the pipe and there is an urgent need for the development of a cost-effective, non-excavating, in-service, permanent critical pipeline damage detection and prediction system. In this paper, we proposed an in-situ multiple mode pipeline monitoring system by utilizing permanently installed piezoelectric wafer active sensors (PWAS). As an active sensing device, PWAS can be bonded to the structure or inserted into a composite structure, operated in propagating wave mode or electromechanical impedance mode. The small size and low cost (about ∼$10 each) make it a potential and unique technology for in-situ application. Additionally, PWAS transducers can operate at a temperature as high as 260°C which is sufficient for most critical pipeline systems used in gas/petroleum industry. This system can be used during in-service period, recording and monitoring the changes, such as cracks, impedance, wall thickness, etc., of the pipelines over time. Having the real-time data available, maintenance strategies based on these data can then be developed to ensure a safe and less expensive operation of the pipeline systems. The paper will first give an intensive literature review of current pipeline corrosion detection. Then, the basic principles of applying PWAS to in-situ SHM using in-plane propagation waves and impedance measurement for damage detection are studied and developed. Next, experiments were conducted to verify the corrosion detection and thickness measurement ability of PWAS sensor network in a laboratory setting and in water pipe with flowing fluid inside as well. In addition, the potential of PWAS application for high temperature pipeline thickness monitoring was also investigated.


Author(s):  
Asaad Migot ◽  
Victor Giurgiutiu

In this work, an impact experiment on a composite plate with unknown material properties (its group velocity profile is unknown) is implemented to localize the impact points. A pencil lead break is used to generate acoustic emission (AE) signals which are acquired by six piezoelectric wafer active sensors (PWAS). These sensors are distributed with a particular configuration in two clusters on the plate. The time of flight (TOF) of acquired signals is estimated at the starting points of these signals. The continuous wavelet transform (CWT) of received signals are calculated with AGU Vallen wavelet program to get the accurate values of the TOF of these signals. Two methods are used for determining the coordinates of impact points (localization the impact point). The first method is the new technique (method 1) by Kundu. This technique has two linear equations with two unknowns (the coordinate of AE source point). The second method is the nonlinear algorithm (method 2). This algorithm has a set of six nonlinear equations with five unknowns. Two MATLAB codes are implemented separately to solve the linear and nonlinear equations. The results show good indications for the location of impact points in both methods. The location errors of calculated impact points are divided by constant distance to get independent percentage errors with the site of the coordinate.


Sign in / Sign up

Export Citation Format

Share Document