Creep-Fatigue Damage Evaluation of Modified Grade 91 Headers Using Damage Coupled Unified Viscoplastic Model

Author(s):  
Nazrul Islam ◽  
David J. Dewees ◽  
Michael Cooch ◽  
Tasnim Hassan

A case study for life prediction of Grade 91 heat recovery steam generator (HRSG) superheater outlet header of typical combined cycle power plants (CCPP) is presented in this paper. The effect of high cycling and fast startup along with elevated design temperature and pressure on the creep life is studied. A consistent material model based on MPC Omega is used to evaluate the creep damage of HRSG header components. In addition, a robust unified constitutive model (UCM) based on continuum damage mechanics (CDM) (see [1]) is used for creep-fatigue damage evaluation of the header components. The performance of the UCM is compared against creep and damage focused models in predicting the life of HRSG header components subjected to steady operation condition with low cycle fatigue scenario.

Author(s):  
Nazrul Islam ◽  
David J. Dewees ◽  
Tasnim Hassan

A continuum damage mechanics (CDM) coupled unified viscoplasticity model has been developed to predict the creep-fatigue life of modified Grade 91 steel. A tertiary creep model termed MPC-Omega codified in Part 10 of API (and also implemented in the ASME BP&V Code for Grade 22V and more recently Grade 91 Steel) is also employed for creep damage evaluation. As MPC-Omega has a direct relationship with Larson-Miller parameter (LMP) coefficients, creep damage coefficients in the unified constitutive model (UCM) are tied with MPC-Omega coefficients in order to utilize WRC and API 579-1 Grade 91 creep rupture database. The model is validated against long-term creep, LCF, creep-fatigue and TMF experimental responses at T = 20–600°C.


Author(s):  
Jürgen Rudolph ◽  
Adrian Willuweit ◽  
Steffen Bergholz ◽  
Christian Philippek ◽  
Jevgenij Kobzarev

Components of conventional power plants are subject to potential damage mechanisms such as creep, fatigue and their combination. These mechanisms have to be considered in the mechanical design process. Against this general background — as an example — the paper focusses on the low cycle fatigue behavior of a main steam shut off valve. The first design check based on standard design rules and linear Finite Element Analysis (FEA) identifies fatigue sensitive locations and potentially high fatigue usage. This will often occur in the context of flexible operational modes of combined cycle power plants which are a characteristic of the current demands of energy supply. In such a case a margin analysis constitutes a logical second step. It may comprise the identification of a more realistic description of the real operational loads and load-time histories and a refinement of the (creep-) fatigue assessment methods. This constitutes the basis of an advanced component design and assessment. In this work, nonlinear FEA is applied based on a nonlinear kinematic constitutive material model, in order to simulate the thermo-mechanical behavior of the high-Cr steel component mentioned above. The required material parameters are identified based on data of the accessible reference literature and data from an own test series. The accompanying testing campaign was successfully concluded by a series of uniaxial thermo-mechanical fatigue (TMF) tests simulating the most critical load case of the component. This detailed and hybrid approach proved to be appropriate for ensuring the required lifetime period of the component.


1985 ◽  
Vol 107 (3) ◽  
pp. 260-270 ◽  
Author(s):  
F. Masuyama ◽  
K. Setoguchi ◽  
H. Haneda ◽  
F. Nanjo

The increase of long-term service exposure to thermal power plants, the tendency toward intermediate and cyclic operation to meet the change in electric power demand and supply situation, and the requirement to develop higher-temperature and higher-pressure plants have led to increasing attention towards the reliability improvement. This paper presents findings from field experiences of cracking or failure and two types of damage analyses—(1) creep-fatigue damage analysis based on the life fraction rule and (2) metallurgical damage analysis—of boiler pressure parts that have been exposed to long-term elevated temperature service. The field experiences are (1) cracking or failure of thick-walled Type 316 stainless steel pressure parts in the main steam line of an ultra-supercritical thermal power plant and (2) dissimilar metal weld joints for boiler tubing. The creep-fatigue damage analysis of these pressure parts showed a reasonable correspondence with the field experience. According to the creep-fatigue damage analysis and the metallurgical damage analysis, most of damage was restrained creep mode phenomenon without deformation. The creep damage was composed of metallurgical damage and mechanical damage such as microvoids and structural defects. One method of simulating field experienced creep damage was proposed and performed. As a result, the process of creep voids being generated and growing into cracks without deformation was successfully observed. Also a review of the current status of nondestructive detecting methods of creep damage suggests that detecting the creep voids metallurgically is more practical at the present time than doing so analyzing the changes in physical properties of the material. It is also suggested that, in the metallurgical approach, detecting the creep voids and cracks by replica method and anlayzing precipitates for evaluation of material deterioration by precipitate extraction method will make it possible to successfully address the problem of plant equipment creep damage evaluation and life prediction.


Author(s):  
Hirokazu Oriyama ◽  
Takashi Kawakami ◽  
Takahiro Kinoshita

Sn-Ag-Cu solder materials have been widely used for the mount process of electronics devices or semiconductor packages on print circuit board (PCB). The solder joints are sometimes opened under thermal cyclic loads as low cycle fatigue phenomenon. The fatigue life of solder joint has been investigated by many researchers with experimental and numerical methods. Generally, the induced thermal stress in solder joints should be relaxed as soon and creep damage is considered to be ignored in order to estimate lives of joints. However, it is probable that long term stress is applied to solder joints by the elastic follow-up phenomenon which are depending on the stiffness ratio between solder joints and the electronics device, because the elastic strain in PCB or the electronics device shifts to creep strain in solder joints gradually during a long time. Then the creep damage of solder joint should be counted for the mechanical design of mounted PCBs. And it is known that the interaction between creep damage and fatigue damage significantly shorten the life. In this study, it was discussed whether the interaction between fatigue damage and creep damage has to be considered or not for the mechanical design of the lead free solder joint with basic creep-fatigue tests at an elevated temperature.


Author(s):  
Uijeong Ro ◽  
Jeong Hwan Kim ◽  
Hoomin Lee ◽  
Seok Jun Kang ◽  
Moon Ki Kim

The Sodium Fast-cooled Reactor (SFR), are generation IV nuclear power plants, have a target operating temperature of 550°C which makes creep-fatigue behavior more critical than a generation III nuclear power plants. So it is important to understand the nature of creep-fatigue behavior of the piping material, Grade 91 steel. The creep-fatigue damage diagram of Grade 91 steel used in ASME-NH was derived using a conventional time-fraction testing method which was originally developed for type 300 stainless steels. Multiple studies indicate that the creep-fatigue damage diagram of Grade 91 steel developed using this testing method has excessive conservatism in it. Therefore, an alternative testing method was suggested by separating creep and fatigue using interrupted creep tests. The suggested method makes it possible to control creep life consumption freely which was difficult with the previous method. It also makes it easier to observe the interaction between creep and fatigue mechanisms and microstructural evolution. In conclusion, an alternative creep-fatigue damage diagram for Grade 91 steel at 550°C was developed using an interrupt creep fatigue testing method and FE model simulation.


Author(s):  
Tai Asayama ◽  
Robert Jetter

Renewed interest in elevated temperature nuclear reactors has occasioned a reassessment of creep-fatigue damage evaluation methods. Points to be improved in the current methods employed in Subsection NH of the ASME B&PV Code and other design codes are discussed as well as an alternate approach which avoids some of these problems. Most current creep-fatigue damage evaluation methods separately evaluate cyclic fatigue damage and creep damage and assess the combined damage through interaction diagrams. Typically test data are evaluated through a Miner’s Rule summation of fatigue damage and either a time fraction summation of creep damage or a ductility exhaustion approach in order to establish the appropriate interaction curve. In these approaches, cycles to failure can be counted directly but creep damage is a calculated parameter, subject the limitations of the evaluation technique. There can be considerable scatter in the results. The process is reversed for design and the methodology chosen to assess creep damage will have a major impact on the viability of the design process. This was found to be particularly true for advanced alloys such as Mod9Cr-1Mo-V, aka Grade 91. An alternate approach to determination of cyclic life has been proposed which avoids parsing the damage into creep and fatigue components. This approach, called the Simplified Model Test (SMT), employs a test specimen with elastic follow-up sized to represent the stress and strain redistribution encountered in more complex structures. The correlation parameter between test and design is the elastically calculated strain and the dependent test variable is the observed cycles to failure. The SMT approach has two major advantages. First, because the correlation parameter is elastically calculated strain, it is not necessary to calculate the inelastic stress-strain history for a design evaluation; either directly through inelastic analysis or indirectly through manipulation of elastic analyses. Second, because the test specimen itself incorporates the hardening, softening and aging effects of the structure it represents, it is not necessary do rely on theoretical modeling of these effects in an artificial separate accounting of creep and fatigue damage.


1994 ◽  
Vol 116 (4) ◽  
pp. 488-494
Author(s):  
Yoshitada Isono ◽  
Masao Sakane ◽  
Masateru Ohnami ◽  
Kazunari Fujiyama

This paper studies tension/torsion multiaxial low-cycle fatigue lives and creep-fatigue damage evaluation for Alloy 738LC superalloy. Tension/torsion creep-fatigue tests were carried out using hollow cylinder specimens and multiaxial creep-fatigue lives were obtained. The Mises’ equivalent strain correlated the multiaxial low cycle fatigue lives within a factor of two scatter band. An a.c. potential method is developed to detect the creep-fatigue damage associated with crack nucleation and extension. A.c. potentials at high frequencies accurately detect the creep-fatigue damage from the early stage of life while those at low frequencies detect that in the final stage of life. A.c. potentials at high frequencies detect the crack density, defined as the total crack length per unit area, and maximum crack length more sensitively than those at low frequencies.


Author(s):  
Felix Koelzow ◽  
Muhammad Mohsin Khan ◽  
Christian Kontermann ◽  
Matthias Oechsner

Abstract Several (accumulative) lifetime models were developed to assess the lifetime consumption of high-temperature components of steam and gas turbine power plants during flexible operation modes. These accumulative methods have several drawbacks, e.g. that measured loading profiles cannot be used within accumulative lifetime methods without manual corrections, and cannot be combined directly to sophisticated probabilistic methods. Although these methods are widely accepted and used for years, the accumulative lifetime prediction procedures need improvement regarding the lifetime consumption of thermal power plants during flexible operation modes. Furthermore, previous investigations show that the main influencing factor from the materials perspective, the critical damage threshold, cannot be statistically estimated from typical creep-fatigue experiments due to massive experimental effort and a low amount of available data. This paper seeks to investigate simple damage mechanics concepts applied to high-temperature components under creep-fatigue loading to demonstrate that these methods can overcome some drawbacks and use improvement potentials of traditional accumulative lifetime methods. Furthermore, damage mechanics models do not provide any reliability information, and the assessment of the resultant lifetime prediction is nearly impossible. At this point, probabilistic methods are used to quantify the missing information concerning failure probabilities and sensitivities and thus, the combination of both provides rigorous information for engineering judgment. Nearly 50 low cycle fatigue experiments of a high chromium cast steel, including dwell times and service-type cycles, are used to investigate the model properties of a simple damage evolution equation using the strain equivalence hypothesis. Furthermore, different temperatures from 300 °C to 625 °C and different strain ranges from 0.35% to 2% were applied during the experiments. The determination of the specimen stiffness allows a quantification of the damage evolution during the experiment. The model parameters are determined by Nelder-Mead optimization procedure, and the dependencies of the model parameters concerning to different temperatures and strain ranges are investigated. In this paper, polynomial chaos expansion (PCE) is used for uncertainty propagation of the model uncertainties while using non-intrusive methods (regression techniques). In a further post-processing step, the computed PCE coefficients of the damage variable are used to determine the probability of failure as a function of cycles and evolution of the probability density function (pdf). Except for the selected damage mechanics model which is considered simple, the advantages of using damage mechanics concepts combined with sophisticated probabilistic methods are presented in this paper.


Author(s):  
Raghu V. Prakash

Creep, creep-fatigue damage is often estimated through in-situ metallography, tensile testing of specimens. However, these methods require specimen preparation which includes specimen extraction from critical components. Automated ball indentation testing has been used as an effective tool to determine the mechanical properties of metallic materials. In this work, the tensile properties of materials subjected to controlled levels of damage in creep, creep-fatigue is studied. It is found that the tensile properties such as yield strength and UTS deteriorates with creep damage, whereas the same specimens show an improved UTS values (at the cost of ductility) when subjected to creep-fatigue interactions.


Sign in / Sign up

Export Citation Format

Share Document