A Modular System to Examine Fibroblastic Differentiation of Mesenchymal Stem Cells Under Tensile Loading in Response to Changes in the Extracellular Environment

Author(s):  
Johnna S. Temenoff

Hundreds of thousands of injuries to ligaments, tendons or the joint capsule occur in the U.S. each year, resulting in significant reduction of quality of life for many patients [1]. Existing reconstruction techniques for torn tendons/ligaments result in significant morbidity and cannot fully recapitulate the native joint biomechanics, leading to secondary degeneration over time, such as premature osteoarthritis. Thus, tissue-engineered alternatives to current grafts, potentially using stem cells in combination with an appropriate scaffold, are greatly needed. In response, our laboratory is investigating a novel hydrogel system and a custom tensile bioreactor as an in-vitro model to study the formation of both fibrous (ligament) tissue and the ligament-bone interface. In these studies, we examine the effect of tensile loading and the degradability of the surrounding environment on cellular morphology and tendon/ligament extracellular matrix (ECM) production by mesenchymal stem cells (MSCs). In particular, the response of MSCs embedded within hydrogels with varying degrees of susceptibility to degradation by collagenase is explored. In addition, proof-of-principle experiments are presented to extend this system to examine the effect of co-culture of multiple cell types on differentiation of MSCs in a milieu that mimics the bone-ligament insertion.

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1306
Author(s):  
Ann-Kristin Afflerbach ◽  
Mark D. Kiri ◽  
Tahir Detinis ◽  
Ben M. Maoz

The human-relevance of an in vitro model is dependent on two main factors—(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.


2011 ◽  
Vol 43 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Cornelia Hildebrandt ◽  
Heiko Büth ◽  
Hagen Thielecke

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Soukaina Bahsoun ◽  
Karen Coopman ◽  
Elizabeth C. Akam

AbstractMesenchymal stem cells (MSCs) represent an invaluable asset for the field of cell therapy. Human Bone marrow-derived MSCs (hBM-MSCs) are one of the most commonly used cell types in clinical trials. They are currently being studied and tested for the treatment of a wide range of diseases and conditions. The future availability of MSCs therapies to the public will require a robust and reliable delivery process. Cryopreservation represents the gold standard in cell storage and transportation, but its effect on BM-MSCs is still not well established. A systematic review was conducted to evaluate the impact of cryopreservation on BM-MSCs and to attempt to uncover the reasons behind some of the controversial results reported in the literature. Forty-one in vitro studies were analysed, and their results organised according to the cell attributes they assess. It was concluded that cryopreservation does not affect BM-MSCs morphology, surface marker expression, differentiation or proliferation potential. However, mixed results exist regarding the effect on colony forming ability and the effects on viability, attachment and migration, genomic stability and paracrine function are undefined mainly due to the huge variabilities governing the cryopreservation process as a whole and to the lack of standardised assays.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e78226 ◽  
Author(s):  
Katja Kriebel ◽  
Anne Biedermann ◽  
Bernd Kreikemeyer ◽  
Hermann Lang

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hakan Orbay ◽  
Morikuni Tobita ◽  
Hiroshi Mizuno

Mesenchymal stem cells (MSCs) are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyocytes. Isolation and induction of these cells could provide a new therapeutic tool for replacing damaged or lost adult tissues. However, the biological properties and use of stem cells in a clinical setting must be well established before significant clinical benefits are obtained. This paper summarizes data on the biological properties of MSCs and discusses current and potential clinical applications.


2020 ◽  
Author(s):  
Saúl Pérez-Castrillo ◽  
María Luisa González-Fernández ◽  
Jessica Álvarez-Suárez ◽  
Jaime Sánchez-Lázaro ◽  
Marta Esteban-Blanco ◽  
...  

Abstract Introduction: Osteoarthritis (OA) is a degenerative joint disease which affects the whole joint structure. Many authors have focused on the factors responsible for the development of inflammatory processes involved in OA. Adipose tissue-derived mesenchymal stem cells (ASCs) represent a promising alternative of cell-based therapy strategy in the treatment of OA which could be combined with any other drug. Chondroitin sulfate plays a protective role in the joint based on the decrease of pro-inflammatory cytokines, thus having an important role in activating and inhibiting the metabolic pathways in chondrocytes. Aims: The effectiveness of chondroitin sulfate and ASCs combined in an in vitro model of OA has been evaluated in this study. Materials: Cytokines and factors which are involved in OA as well as specific cartilage gene expression after adding ASCs and chondroitin sulfate have been discussed in detail. Results: Our results show a decrease in the expression of all genes related to the pro-inflammatory cytokines analysed. Although there was no increase in the expression of the specific genes of the cartilage matrix, such as collagen type II and aggrecan. Conclusions: This study shows the effectiveness of association of ASCs and chondroitin sulfate for the treatment of OA.


2002 ◽  
Vol 11 (3) ◽  
pp. 283-295 ◽  
Author(s):  
Matthew C. Tate ◽  
Deborah A. Shear ◽  
Stuart W. Hoffman ◽  
Donald G. Stein ◽  
David R. Archer ◽  
...  

Multipotential stem cells are an attractive choice for cell therapy after traumatic brain injury (TBI), as replacement of multiple cell types may be required for functional recovery. In the present study, neural stem cells (NSCs) derived from the germinal zone of E14.5 GFP-expressing mouse brains were cultured as neurospheres in FGF2-enhanced medium. When FGF2 was removed in vitro, NSCs expressed phenotypic markers for neurons, astrocytes, and oligodendrocytes and exhibited migratory behavior in the presence of adsorbed fibronectin (FN). NSCs (105 cells) were transplanted into mouse brains 1 week after a unilateral, controlled, cortical contusion (depth = 1 mm, velocity = 6 m/s, duration = 150 ms) (n = 19). NSCs were injected either directly into the injury cavity with or without an injectable FN-based scaffold [collagen I (CnI)/ FN gel; n = 14] or into the striatum below the injury cavity (n = 5). At all time points examined (1 week to 3 months posttransplant), GFP+ cells were confined to the ipsilateral host brain tissue. At 1 week, cells injected into the injury cavity lined the injury penumbra while cells inserted directly into the striatum remained in or around the needle track. Striatal transplants had a lower number of surviving GFP+ cells relative to cavity injections at the 1 week time point (p < 0.01). At the longer survival times (3 weeks–3 months), 63–76% of transplanted cells migrated into the fimbria hippocampus regardless of injection site, perhaps due to cues from the degenerating hippocampus. Furthermore, cells injected into the cavity within a FN-containing matrix showed increased survival and migration at 3 weeks (p < 0.05 for both) relative to injections of cells alone. These results suggest that FGF2-responsive NSCs present a promising approach for cellular therapy following trauma and that the transplant location and environment may play an important role in graft survival and integration.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 243 ◽  
Author(s):  
Monica Forni ◽  
Chiara Bernardini ◽  
Fausto Zamparini ◽  
Augusta Zannoni ◽  
Roberta Salaroli ◽  
...  

Vascularization is a crucial factor when approaching any engineered tissue. Vascular wall–mesenchymal stem cells are an excellent in vitro model to study vascular remodeling due to their strong angiogenic attitude. This study aimed to demonstrate the angiogenic potential of experimental highly porous scaffolds based on polylactic acid (PLA) or poly-e-caprolactone (PCL) doped with calcium silicates (CaSi) and dicalcium phosphate dihydrate (DCPD), namely PLA-10CaSi-10DCPD and PCL-10CaSi-10DCPD, designed for the regeneration of bone defects. Vascular wall–mesenchymal stem cells (VW-MSCs) derived from pig thoracic aorta were seeded on the scaffolds and the expression of angiogenic markers, i.e. CD90 (mesenchymal stem/stromal cell surface marker), pericyte genes α-SMA (alpha smooth muscle actin), PDGFR-β (platelet-derived growth factor receptor-β), and NG2 (neuron-glial antigen 2) was evaluated. Pure PLA and pure PCL scaffolds and cell culture plastic were used as controls (3D in vitro model vs. 2D in vitro model). The results clearly demonstrated that the vascular wall mesenchymal cells colonized the scaffolds and were metabolically active. Cells, grown in these 3D systems, showed the typical gene expression profile they have in control 2D culture, although with some main quantitative differences. DNA staining and immunofluorescence assay for alpha-tubulin confirmed a cellular presence on both scaffolds. However, VW-MSCs cultured on PLA-10CaSi-10DCPD showed an individual cells growth, whilst on PCL-10CaSi-10DCPD scaffolds VW-MSCs grew in spherical clusters. In conclusion, vascular wall mesenchymal stem cells demonstrated the ability to colonize PLA and PCL scaffolds doped with CaSi-DCPD for new vessels formation and a potential for tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document