scholarly journals Preliminary results comparing thin-plate splines with finite element methods for modeling brain deformation during neurosurgery using intraoperative ultrasound

Author(s):  
Sarah F. Frisken ◽  
Ma Luo ◽  
Ines Machado ◽  
Prashin Unadkat ◽  
Parikshit Juvekar ◽  
...  
2011 ◽  
Vol 52 ◽  
pp. 518 ◽  
Author(s):  
Bishnu P. Lamichhane ◽  
Stephen Roberts ◽  
Linda Stals

2009 ◽  
Vol 42 ◽  
pp. 712 ◽  
Author(s):  
Markus Hegland ◽  
Giles Hooker ◽  
Stephen Roberts

Author(s):  
Jia Geng ◽  
Xingwu Zhang ◽  
Xuefeng Chen ◽  
Xiaofeng Xue

For the dynamic analysis of thin plate bending problems, the Finite Element Methods (FEMs) are the most commonly used numerical techniques in engineering. However, due to the deficiency of low computing efficiency and accuracy, the FEMs can’t be directly used to effectively evaluate dynamic analysis of thin plate with high modal density within low-high frequency domain. In order to solve this problem, the Wavelet Finite Element Methods (WFEMs) has been introduced to solve the problem by improving the computing efficiency and accuracy in this paper. Due to the properties of multi-resolution, the WFEMs own excellently high computing efficiency and accuracy for structure analysis. Furthermore, for the destination of predicting dynamic response of thin plate within high frequency domain, this paper introduces the Multi-wavelet element method based on c1 type wavelet thin plate element and a new assembly procedure to significantly promote the calculating efficiency and accuracy which aim at breaking up the limitation of frequency domain when using the existing WFEMs and traditional FEMs. Besides, the numerical studies are applied to certify the validity of the method by predicting state response of thin plate within 0∼1000Hz based on a special numerical example with high modal density. According to the literature, the frequency domain between 0 to 1000Hz contains the low-high frequency domain aiming at the numerical example. The numerical results show excellent agreement with the reference solutions captured by FEM and analytical expressions respectively. Among these, it is noteworthy that the relative errors between the analytical solutions and numerical solution are less than 0.4% when the dynamic response involved with 1000 modes.


2016 ◽  
Vol 55 ◽  
pp. 210
Author(s):  
Linda Stals ◽  
Bishnu Lamichhane

2021 ◽  
Vol 62 ◽  
pp. C45-C57
Author(s):  
Lishan Fang ◽  
Linda Stals

The discrete thin plate spline smoother fits smooth surfaces to large data sets efficiently. It combines the favourable properties of the finite element surface fitting and thin plate splines. The efficiency of its finite element grid is improved by adaptive refinement, which adapts the precision of the solution. It reduces computational costs by refining only in sensitive regions, which are identified using error indicators. While many error indicators have been developed for the finite element method, they may not work for the discrete smoother. In this article we show three error indicators adapted from the finite element method for the discrete smoother. A numerical experiment is provided to evaluate their performance in producing efficient finite element grids. References F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pat. Anal. Mach. Int. 11.6 (1989), pp. 567–585. doi: 10.1109/34.24792. C. Chen and Y. Li. A robust method of thin plate spline and its application to DEM construction. Comput. Geosci. 48 (2012), pp. 9–16. doi: 10.1016/j.cageo.2012.05.018. L. Fang. Error estimation and adaptive refinement of finite element thin plate spline. PhD thesis. The Australian National University. http://hdl.handle.net/1885/237742. L. Fang. Error indicators and adaptive refinement of the discrete thin plate spline smoother. ANZIAM J. 60 (2018), pp. 33–51. doi: 10.21914/anziamj.v60i0.14061. M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Commun. Stat. Simul. Comput. 19.2 (1990), pp. 433–450. doi: 10.1080/0361091900881286. W. F. Mitchell. A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Soft. 15.4 (1989), pp. 326–347. doi: 10.1145/76909.76912. R. F. Reiniger and C. K. Ross. A method of interpolation with application to oceanographic data. Deep Sea Res. Oceanographic Abs. 15.2 (1968), pp. 185–193. doi: 10.1016/0011-7471(68)90040-5. S. Roberts, M. Hegland, and I. Altas. Approximation of a thin plate spline smoother using continuous piecewise polynomial functions. SIAM J. Numer. Anal. 41.1 (2003), pp. 208–234. doi: 10.1137/S0036142901383296. D. Ruprecht and H. Muller. Image warping with scattered data interpolation. IEEE Comput. Graphics Appl. 15.2 (1995), pp. 37–43. doi: 10.1109/38.365004. E. G. Sewell. Analysis of a finite element method. Springer, 2012. doi: 10.1007/978-1-4684-6331-6. L. Stals. Efficient solution techniques for a finite element thin plate spline formulation. J. Sci. Comput. 63.2 (2015), pp. 374–409. doi: 10.1007/s10915-014-9898-x. O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Meth. Eng. 24.2 (1987), pp. 337–357. doi: 10.1002/nme.1620240206.


2013 ◽  
Vol 41 (2) ◽  
pp. 127-151
Author(s):  
Rudolf F. Bauer

ABSTRACT The benefits of a tire's equilibrium profile have been suggested by several authors in the published literature, and mathematical procedures were developed that represented well the behavior of bias ply tires. However, for modern belted radial ply tires, and particularly those with a lower aspect ratio, the tire constructions are much more complicated and pose new problems for a mathematical analysis. Solutions to these problems are presented in this paper, and for a modern radial touring tire the equilibrium profile was calculated together with the mold profile to produce such tires. Some construction modifications were then applied to these tires to render their profiles “nonequilibrium.” Finite element methods were used to analyze for stress concentrations and deformations within all tires that did or did not conform to equilibrium profiles. Finally, tires were built and tested to verify the predictions of these analyses. From the analysis of internal stresses and deformations on inflation and loading and from the actual tire tests, the superior durability of tires with an equilibrium profile was established, and hence it is concluded that an equilibrium profile is a beneficial property of modern belted radial ply tires.


Sign in / Sign up

Export Citation Format

Share Document