scholarly journals Interpretable deep learning regression for breast density estimation on MRI

Author(s):  
Bas H.M. . van der Velden ◽  
Max A. A. Ragusi ◽  
Markus H. A. Janse ◽  
Claudette E. Loo ◽  
Kenneth G. A. Gilhuijs
Author(s):  
Michiel Kallenberg ◽  
Doiriel Vanegas Camargo ◽  
Mahlet Birhanu ◽  
Albert Gubern-Mérida ◽  
Nico Karssemeijer

Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 988
Author(s):  
Nasibeh Saffari ◽  
Hatem A. Rashwan ◽  
Mohamed Abdel-Nasser ◽  
Vivek Kumar Singh ◽  
Meritxell Arenas ◽  
...  

Breast density estimation with visual evaluation is still challenging due to low contrast and significant fluctuations in the mammograms’ fatty tissue background. The primary key to breast density classification is to detect the dense tissues in the mammographic images correctly. Many methods have been proposed for breast density estimation; nevertheless, most of them are not fully automated. Besides, they have been badly affected by low signal-to-noise ratio and variability of density in appearance and texture. This study intends to develop a fully automated and digitalized breast tissue segmentation and classification using advanced deep learning techniques. The conditional Generative Adversarial Networks (cGAN) network is applied to segment the dense tissues in mammograms. To have a complete system for breast density classification, we propose a Convolutional Neural Network (CNN) to classify mammograms based on the standardization of Breast Imaging-Reporting and Data System (BI-RADS). The classification network is fed by the segmented masks of dense tissues generated by the cGAN network. For screening mammography, 410 images of 115 patients from the INbreast dataset were used. The proposed framework can segment the dense regions with an accuracy, Dice coefficient, Jaccard index of 98%, 88%, and 78%, respectively. Furthermore, we obtained precision, sensitivity, and specificity of 97.85%, 97.85%, and 99.28%, respectively, for breast density classification. This study’s findings are promising and show that the proposed deep learning-based techniques can produce a clinically useful computer-aided tool for breast density analysis by digital mammography.


2019 ◽  
Vol 264 ◽  
pp. 225-234 ◽  
Author(s):  
Simon Madec ◽  
Xiuliang Jin ◽  
Hao Lu ◽  
Benoit De Solan ◽  
Shouyang Liu ◽  
...  

Radiology ◽  
2019 ◽  
Vol 290 (1) ◽  
pp. 59-60 ◽  
Author(s):  
Heang-Ping Chan ◽  
Mark A. Helvie

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1550-1550
Author(s):  
Katherine Cavallo Hom ◽  
Brian Nicholas Dontchos ◽  
Sarah Mercaldo ◽  
Pragya Dang ◽  
Leslie Lamb ◽  
...  

1550 Background: Dense breast tissue is an independent risk factor for malignancy and can mask cancers on mammography. Yet, radiologist-assessed mammographic breast density is subjective and varies widely between and within radiologists. Our deep learning (DL) model was implemented into routine clinical practice at an academic breast imaging center and was externally validated at a separate community practice, with both sites demonstrating high clinical acceptance of the model’s density predictions. The aim of this study is to demonstrate the influence our DL model has on prospective radiologist density assessments in routine clinical practice. Methods: This IRB-approved, HIPAA-compliant retrospective study identified consecutive screening mammograms without exclusion performed across three clinical sites, over two time periods: pre-DL model implementation (January 1, 2017 through September 30, 2017) and post-DL model implementation (January 1, 2019 through September 30, 2019). Clinical sites were as follows: Site A (the academic practice where the DL model was developed and was implemented in late 2017); Site B (an affiliated community practice which implemented the DL model in late 2017 and was used for external validation); and Site C (an affiliated community practice which was never exposed to the DL model). Patient demographics and radiologist-assessed mammographic breast densities were compared over time and across sites. Patient characteristics were evaluated using Wilcoxon test and Pearson’s chi-squared test. Multivariable logistic regression models evaluated the odds of a dense breast classification as a function of time period (pre-DL vs post-DL), race (White vs non-White) and site. Results: A total of 85,865 consecutive screening mammograms across the three clinical sites were identified. After controlling for age and race, adjusted odds ratios (aOR) of a mammogram being classified as dense at Site C compared to Site B before the DL model was implemented was 2.01 (95% CI 1.873, 2.157, p<0.001). This increased to 2.827 (95% CI 2.636, 3.032, p< 0.001) after DL implementation. The aOR of a mammogram being classified as dense at Site A after implementation compared to before implementation was 0.924 (95% CI 0.885, 0.964, p<0.001). Conclusions: Our findings suggest implementation of the DL model influences radiologist’s prospective density assessments in routine clinical practice by reducing the odds of a screening exam being categorized as dense. As a result, clinical use of our model could reduce downstream costs of supplemental screening tests and limit unnecessary high-risk clinic evaluations.[Table: see text]


2003 ◽  
pp. 187-191 ◽  
Author(s):  
D. Rico ◽  
J. Yang ◽  
B. Augustine ◽  
G. E. Mawdsley ◽  
M. J. Yaffe

Sign in / Sign up

Export Citation Format

Share Document