A convolutional neural network for screening and staging of diabetic retinopathy based on wide-field optical coherence tomography angiography

2021 ◽  
Author(s):  
Bowen Dong ◽  
Xiangning Wang ◽  
Guogang Cao ◽  
Lei Gao ◽  
Fengxian Du ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Toshihiko Nagasawa ◽  
Hitoshi Tabuchi ◽  
Hiroki Masumoto ◽  
Shoji Morita ◽  
Masanori Niki ◽  
...  

Purpose. The present study aimed to compare the accuracy of diabetic retinopathy (DR) staging with a deep convolutional neural network (DCNN) using two different types of fundus cameras and composite images. Method. The study included 491 ultra-wide-field fundus ophthalmoscopy and optical coherence tomography angiography (OCTA) images that passed an image-quality review and were graded as no apparent DR (NDR; 169 images), mild nonproliferative DR (NPDR; 76 images), moderate NPDR (54 images), severe NPDR (90 images), and proliferative DR (PDR; 102 images) by three retinal experts by the International Clinical Diabetic Retinopathy Severity Scale. The findings of tests 1 and 2 to identify no apparent diabetic retinopathy (NDR) and PDR, respectively, were then assessed. For each verification, Optos, OCTA, and Optos OCTA imaging scans with DCNN were performed. Result. The Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and DR showed mean areas under the curve (AUC) of 0.79, 0.883, and 0.847; sensitivity rates of 80.9%, 83.9%, and 78.6%; and specificity rates of 55%, 71.6%, and 69.8%, respectively. Meanwhile, the Optos, OCTA, and Optos OCTA imaging test results for comparison between NDR and PDR showed mean AUC of 0.981, 0.928, and 0.964; sensitivity rates of 90.2%, 74.5%, and 80.4%; and specificity rates of 97%, 97%, and 96.4%, respectively. Conclusion. The combination of Optos and OCTA imaging with DCNN could detect DR at desirable levels of accuracy and may be useful in clinical practice and retinal screening. Although the combination of multiple imaging techniques might overcome their individual weaknesses and provide comprehensive imaging, artificial intelligence in classifying multimodal images has not always produced accurate results.


2021 ◽  
Vol 38 (1) ◽  
Author(s):  
Abdul Sami Memon ◽  
Nasir Ahmed Memon ◽  
Pir Salim Mahar

Objective: To assess proliferative diabetic retinopathy (PDR) and to describe the difference in angiographic representation of new vessels (NVs) and Intra retinal microvascular abnormalities (IRMA) on optical coherence tomography angiography (OCTA). Methods: A cross-sectional observational study was performed at ISRA Postgraduate Institute of Ophthalmology, Karachi, from March 2018 to September 2018. Forty-two eyes of 21 patients with history of diabetes mellitus (DM) were examined. Twenty-eight eyes with a clinical diagnosis of severe non proliferative diabetic retinopathy (NPDR) or proliferative diabetic retinopathy (PDR) according to early treatment diabetic retinopathy study (ETDRS) were included and evaluated using Swept source optical coherence tomography angiography (SS-OCTA). Then face wide field SS-OCTA images and co registered structural optical coherence tomography (OCT) with flow overlay were used to distinguish the features of IRMA and retinal NVs. Results: Forty-two eyes (21 patients) were examined clinically. Fourteen eyes had moderate NPDR, 15 had severe NPDR and 13 eyes had changes consistent with PDR. After clinical diagnosis, we included 28 eyes in our study based on inclusion criteria. These 28 eyes went through SS-OCTA evaluation and we observed 15 cases with PDR and 13 with severe NPDR changes. The OCTA and clinical diagnosis were similar except in 2 eyes, which is critical but not statically significant showing the importance of this noninvasive technology. Conclusions: Widefield OCTA can work as an alternative to fundus fluorescein angiography (FFA) in the diagnosis of diabetic retinopathy (DR). As it is a non-invasive and depth encoded technique so can be used frequently to monitor the retinal changes and their progression. doi: https://doi.org/10.12669/pjms.38.1.3891 How to cite this:Memon AS, Memon NA, Mahar PS. Role of Optical Coherence Tomography Angiography to differentiate Intraretinal microvascular abnormalities and retinal neovascularization in Diabetic Retinopathy. Pak J Med Sci. 2022;38(1):---------.  doi: https://doi.org/10.12669/pjms.38.1.3891 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Sign in / Sign up

Export Citation Format

Share Document