scholarly journals Ingestion of Sodium Bicarbonate (NaHCO3) Following a Fatiguing Bout of Exercise Accelerates Postexercise Acid-Base Balance Recovery and Improves Subsequent High-Intensity Cycling Time to Exhaustion

2017 ◽  
Vol 27 (5) ◽  
pp. 429-438 ◽  
Author(s):  
Lewis A. Gough ◽  
Steven Rimmer ◽  
Callum J. Osler ◽  
Matthew F. Higgins

This study evaluated the ingestion of sodium bicarbonate (NaHCO3) on postexercise acid-base balance recovery kinetics and subsequent high-intensity cycling time to exhaustion. In a counterbalanced, crossover design, nine healthy and active males (age: 23 ± 2 years, height: 179 ± 5 cm, body mass: 74 ± 9 kg, peak mean minute power (Wpeak) 256 ± 45 W, peak oxygen uptake (V̇O2peak) 46 ± 8 ml.kg-1.min-1) performed a graded incremental exercise test, two familiarization and two experimental trials. Experimental trials consisted of cycling to volitional exhaustion (TLIM1) at 100% WPEAK on two occasions (TLIM1 and TLIM2) interspersed by a 90 min passive recovery period. Using a double-blind approach, 30 min into a 90 min recovery period participants ingested either 0.3 g.kg-1 body mass sodium bicarbonate (NaHCO3) or a placebo (PLA) containing 0.1 g.kg-1 body mass sodium chloride (NaCl) mixed with 4 ml.kg-1 tap water and 1 ml.kg-1 orange squash. The mean differences between TLIM2 and TLIM1 was larger for PLA compared with NaHCO3 (-53 ± 53 vs. -20 ± 48 s; p = .008, d = 0.7, CI =-0.3, 1.6), indicating superior subsequent exercise time to exhaustion following NaHCO3. Blood lactate [Bla-] was similar between treatments post TLIM1, but greater for NaHCO3 post TLIM2 and 5 min post TLIM2. Ingestion of NaHCO3 induced marked increases (p < .01) in both blood pH (+0.07 ± 0.02, d = 2.6, CI = 1.2, 3.7) and bicarbonate ion concentration [HCO3-] (+6.8 ± 1.6 mmo.l-1, d = 3.4, CI = 1.8, 4.7) compared with the PLA treatment, before TLIM2. It is likely both the acceleration of recovery, and the marked increases of acid-base after TLIM1 contributed to greater TLIM2 performance compared with the PLA condition.

Author(s):  
William Gurton ◽  
Heather Z. Macrae ◽  
Lewis A. Gough ◽  
David George King

This study investigated the effect of post-exercise sodium bicarbonate (NaHCO3) ingestion on acid-base balance recovery and time-to-exhaustion (TTE) running performance. Eleven male runners (stature, 1.80 ± 0.05 m; body mass, 74.4 ± 6.5 kg; maximal oxygen consumption, 51.7 ± 5.4 ml.kg-1.min-1) participated in this randomised, single-blind, counterbalanced and crossover design study. Maximal running velocity (v-VO2max) was identified from a graded exercise test. During experimental trials, participants repeated 100% v-VO2max TTE protocols (TTE1, TTE2) separated by 40 min following the ingestion of either 0.3 g.kg-1 BM NaHCO3 (SB) or 0.03 g.kg-1 BM sodium chloride (PLA) at the start of TTE1 recovery. Acid-base balance (blood pH and bicarbonate, HCO3-) data were studied at baseline, post-TTE1, after 35 min recovery and post-TTE2. Blood pH and [HCO3-] were unchanged at 35 min recovery (p > 0.05), but [HCO3-] was elevated post-TTE2 for SB vs. PLA (+2.6 mmol.l-1; p = 0.005; g = 0.99). No significant differences were observed for TTE2 performance (p > 0.05), although a moderate effect size was present for SB vs. PLA (+14.3 s; g = 0.56). Post-exercise NaHCO3 ingestion is not an effective strategy for accelerating the restoration of acid-base balance or improving subsequent TTE performance when limited recovery is available. Novelty bullets: •Post-exercise sodium bicarbonate ingestion did not accelerate the restoration of blood pH or bicarbonate after 35 minutes •Performance enhancing effects of sodium bicarbonate ingestion may display a high degree of inter-individual variation •Small-to-moderate changes in performance were likely due to greater up-regulation of glycolytic activation during exercise


2016 ◽  
Vol 41 (4) ◽  
pp. 354-361 ◽  
Author(s):  
Matthew F. Higgins ◽  
Susie Wilson ◽  
Cameron Hill ◽  
Mike J. Price ◽  
Mike Duncan ◽  
...  

This study evaluated the effects of ingesting sodium bicarbonate (NaHCO3) or caffeine individually or in combination on high-intensity cycling capacity. In a counterbalanced, crossover design, 13 healthy, noncycling trained males (age: 21 ± 3 years, height: 178 ± 6 cm, body mass: 76 ± 12 kg, peak power output (Wpeak): 230 ± 34 W, peak oxygen uptake: 46 ± 8 mL·kg−1·min−1) performed a graded incremental exercise test, 2 familiarisation trials, and 4 experimental trials. Trials consisted of cycling to volitional exhaustion at 100% Wpeak (TLIM) 60 min after ingesting a solution containing either (i) 0.3 g·kg−1 body mass sodium bicarbonate (BIC), (ii) 5 mg·kg−1 body mass caffeine plus 0.1 g·kg−1 body mass sodium chloride (CAF), (iii) 0.3 g·kg−1 body mass sodium bicarbonate plus 5 mg·kg−1 body mass caffeine (BIC-CAF), or (iv) 0.1 g·kg−1 body mass sodium chloride (PLA). Experimental solutions were administered double-blind. Pre-exercise, at the end of exercise, and 5-min postexercise blood pH, base excess, and bicarbonate ion concentration ([HCO3−]) were significantly elevated for BIC and BIC-CAF compared with CAF and PLA. TLIM (median; interquartile range) was significantly greater for CAF (399; 350–415 s; P = 0.039; r = 0.6) and BIC-CAF (367; 333–402 s; P = 0.028; r = 0.6) compared with BIC (313: 284–448 s) although not compared with PLA (358; 290–433 s; P = 0.249, r = 0.3 and P = 0.099 and r = 0.5, respectively). There were no differences between PLA and BIC (P = 0.196; r = 0.4) or between CAF and BIC-CAF (P = 0.753; r = 0.1). Relatively large inter- and intra-individual variation was observed when comparing treatments and therefore an individual approach to supplementation appears warranted.


1980 ◽  
Vol 84 (1) ◽  
pp. 289-302
Author(s):  
R. G. Boutilier ◽  
D. G. McDonald ◽  
D. P. Toews

A combined respiratory and metabolic acidosis occurs in the arterial blood immediately following 30 min of strenuous activity in the predominantly skin-breathing urodele, Cryptobranchus alleganiensis, and in the bimodal-breathing anuran, Bufo marinus, at 25 degrees C. In Bufo, the bulk of the post-exercise acidosis is metabolic in origin (principally lactic acid) and recovery is complete within 4-8 h. In the salamander, a lower magnitude, longer duration, metabolic acid component and a more pronounced respiratory acidosis prolong the recovery period for up to 22 h post-exercise. It is suggested that fundamental differences between the dominant sites for gas exchange (pulmonary versus cutaneous), and thus in the control of respiratory acid-base balance, may underline the dissimilar patterns of recovery from exercise in these two species.


1989 ◽  
Vol 257 (4) ◽  
pp. F696-F699
Author(s):  
T. Almdal ◽  
H. Vilstrup ◽  
K. Bjerrum ◽  
L. O. Kristensen

It has been suggested that urea synthesis participates directly in body pH homeostasis by removal of bicarbonate. To elucidate this hypothesis sodium bicarbonate or sodium chloride was infused (11.5 mumol/min) for 90 min into control rats and into rats that had undergone an 85% hepatectomy immediately before starting the infusion. Urea synthesis rate was 2.6 +/- 0.3 mumol/min (mean +/- SE) in controls, and was significantly (P less than 0.01) reduced to 1.0 +/- 0.2 mumol/min in partially hepatectomized rats. At the start of bicarbonate infusion, pH was 7.38 and 7.34 in control and partially hepatectomized rats, respectively, and at the end of infusion, pH was 7.56 and 7.51. Standard bicarbonate at start of bicarbonate infusion was 21.9 and 21.3 mM in controls and partially hepatectomized, respectively, and it increased to 32.7 and 29.9 mM at end of infusion. In saline-infused rats a slight decrease of approximately 0.05 pH units was observed during the experiment, but again no difference emerged between control and partially hepatectomized rats. It is concluded that a major role of the liver in the regulation of acid-base balance is unlikely.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Thomas Stöggl ◽  
Rafael Torres-Peralta ◽  
Ebru Cetin ◽  
Masaru Nagasaki

The effects of varying recovery modes and the influence of preexercise sodium bicarbonate and carbohydrate ingestion on repeated high intensity performance, acid-base response, and recovery were analyzed in 12 well-trained males. They completed three repeated high intensity running bouts to exhaustion with intervening recovery periods of 25 min under the following conditions: sodium bicarbonate, active recovery (BIC); carbohydrate ingestion, active recovery (CHO); placebo ingestion, active recovery (ACTIVE); placebo ingestion, passive recovery (PASSIVE). Blood lactate (BLa), blood gases, heart rate, and time to exhaustion were collected. The three high intensity bouts had a duration of138±9, 124±6, and121±6 s demonstrating a decrease from bout 1 to bout 3. Supplementation strategy had no effect on performance in the first bout, even with differences in pH and bicarbonate (HCO3-). Repeated sprint performance was not affected by supplementation strategy when compared to ACTIVE, while PASSIVE resulted in a more pronounced decrease in performance compared with all other interventions. BIC led to greater BLa, pH, and HCO3-values compared with all other interventions, while for PASSIVE the opposite was found. BLa recovery was lowest in PASSIVE; recovery in pH, and HCO3-was lower in PASSIVE and higher in BIC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yago Medeiros Dutra ◽  
Gabriel Machado Claus ◽  
Elvis de Souza Malta ◽  
Daniela Moraes de Franco Seda ◽  
Anderson Saranz Zago ◽  
...  

PurposeThe aim of the current study was to investigate the effects of photobiomodulation therapy (PBMT) applied 30 min or 6 h prior to cycling on blood flow velocity and plasma nitrite concentrations at rest, time to exhaustion, cardiorespiratory responses, blood acid-base balance, and K+ and lactate concentrations during exercise.MethodsIn a randomized, crossover design, 13 healthy untrained men randomly completed four cycling bouts until exhaustion at the severe-intensity domain (i.e., above respiratory compensation point). Thirty minutes or 6 h prior to the cycling trials, participants were treated with PBMT on the quadriceps, hamstrings, and gastrocnemius muscles of both limbs using a multi-diode array (11 cm × 30 cm with 264 diodes) at doses of 152 J or a sham irradiation (with device turned off, placebo). Blood samples were collected before and 30 min or 6 h after treatments to measure plasmatic nitrite concentrations. Doppler ultrasound exams of the femoral artery were also performed at the same time points. Cardiorespiratory responses, blood acid-base balance, and K+ and lactate concentrations were monitored during exercise sessions.ResultsPBMT did not improve the time to exhaustion (p = 0.30). At rest, no differences were found in the peak systolic velocity (p = 0.97) or pulsatility index (p = 0.83) in the femoral artery, and in plasma nitrite concentrations (p = 0.47). During exercise, there were no differences for any cardiorespiratory response monitored (heart rate, p = 0.15; oxygen uptake, p = 0.15; pulmonary ventilation, p = 0.67; carbon dioxide output, p = 0.93; and respiratory exchange ratio, p = 0.32), any blood acid-base balance indicator (pH, p = 0.74; base excess, p = 0.33; bicarbonate concentration, p = 0.54), or K+ (p = 0.22) and lactate (p = 0.55) concentrations.ConclusionsPBMT at 152 J applied 30 min or 6 h before cycling at severe-intensity did not alter resting plasma nitrite and blood flow velocity in the femoral artery, exercise-induced physiological responses, or time to exhaustion in healthy untrained men.


Sign in / Sign up

Export Citation Format

Share Document