A Prediction Model for Peak Power Output From Different Incremental Exercise Tests

2006 ◽  
Vol 1 (2) ◽  
pp. 122-136 ◽  
Author(s):  
Hans Luttikholt ◽  
Lars R. McNaughton ◽  
Adrian W. Midgley ◽  
David J. Bentley

Context:There is currently no model that predicts peak power output (PPO) thereby allowing comparison between different incremental exercise test (EXT) protocols. In this study we have used the critical power profile to develop a mathematical model for predicting PPO from the results of different EXTs.Purpose:The purpose of this study was to examine the level of agreement between actual PPO values and those predicted from the new model.Methods:Eleven male athletes (age 25 ± 5 years, VO2max 62 ± 8 mL · kg–1 · min–1) completed 3 laboratory tests on a cycle ergometer. Each test comprised an EXT consisting of 1-minute workload increments of 30 W (EXT30/1) and 3-minute (EXT25/3) and 5-minute workload increments (EXT25/5) of 25 W. The PPO determined from each test was used to predict the PPO from the remaining 2 EXTs.Results:The differences between actual and predicted PPO values were statistically insignificant (P > .05). The random error components of the limits of agreement of ≤30 W also indicated acceptable levels of agreement between actual and predicted PPO values.Conclusions:Further data collection is necessary to confirm whether the model is able to predict PPO over a wide range of EXT protocols in athletes of different aerobic and anaerobic capacities.

Author(s):  
Theresa Schörkmaier ◽  
Yvonne Wahl ◽  
Christian Brinkmann ◽  
Wilhelm Bloch ◽  
Patrick Wahl

AbstractRecent studies have shown that the oxygenated hemoglobin level can be enhanced during rest through the application of nonivamide-nicoboxil cream. However, the effect of nonivamide-nicoboxil cream on oxygenation and endurance performance under hypoxic conditions is unknown. Therefore, the purpose of this study was to investigate the effects of nonivamide-nicoboxil cream on local muscle oxygenation and endurance performance under normoxic and hypoxic conditions. In a cross-over design, 13 athletes (experienced cyclists or triathletes [age: 25.2±3.5 years; VO2max 62.1±7.3 mL·min−1·kg−1]) performed four incremental exercise tests on the cycle ergometer under normoxic or hypoxic conditions, either with nonivamide-nicoboxil or placebo cream. Muscle oxygenation was recorded with near-infrared spectroscopy. Capillary blood samples were taken after each step, and spirometric data were recorded continuously. The application of nonivamide-nicoboxil cream increased muscle oxygenation at rest and during different submaximal workloads as well as during physical exhaustion, irrespective of normoxic or hypoxic conditions. Overall, there were no significant effects of nonivamide-nicoboxil on peak power output, maximal oxygen uptake or lactate concentrations. Muscle oxygenation is significantly higher with the application of nonivamide-nicoboxil cream. However, its application does not increase endurance performance.


2020 ◽  
Vol 15 (9) ◽  
pp. 1303-1308
Author(s):  
Marco J. Konings ◽  
Florentina J. Hettinga

Purpose: The behavior of an opponent has been shown to alter pacing and performance. To advance our understanding of the impact of perceptual stimuli such as an opponent on pacing and performance, this study examined the effect of a preexercise cycling protocol on exercise regulation with and without an opponent. Methods: Twelve trained cyclists performed 4 experimental, self-paced 4-km time-trial conditions on an advanced cycle ergometer in a randomized, counterbalanced order. Participants started the time trial in rested state (RS) or performed a 10-min cycling protocol at 67% peak power output (CP) before the time trial. During the time trials, participants had to ride alone (NO) or against a virtual opponent (OP). The experimental conditions were (1) RS-NO, (2) RS-OP, (3) CP-NO, and (4) CP-OP. Repeated-measures analyses of variance (P < .05) were used to examine differences in pacing and performance in terms of power output. Results: A faster pace was adopted in the first kilometer during RS-OP (318 [72] W) compared with RS-NO (291 [81] W; P = .03), leading to an improved finishing time during RS-OP compared with RS-NO (P = .046). No differences in either pacing or performance were found between CP-NO and CP-OP. Conclusions: The evoked response by the opponent to adopt a faster initial pace in the 4-km time trial disappeared when cyclists had to perform a preceding cycling protocol. The outcomes of this study highlight that perceived exertion alters the responsiveness to perceptual stimuli of cyclists during competition.


2009 ◽  
Vol 32 (6) ◽  
pp. 302 ◽  
Author(s):  
G S Zavorsky ◽  
J R Kryder ◽  
S V Jacob ◽  
A L Coates ◽  
G M Davis ◽  
...  

Background: Pulmonary function of children with cystic fibrosis (CF) and bronchopulmonary dysplasia (BPD) is similar at rest even though the mechanisms of injury differ. We sought to compare the peak exercise responses in children with BPD versus CF while controlling for pulmonary impairment, nutritional status, gender, age, height, and predicted forced expired volume in 1 second (~73% of predicted). Methods: Nine BPD children and 9 CF children underwent spirometry and a progressive exercise test to maximum on a cycle ergometer. Results: There was no difference between groups in body mass percentile (CF:97 ± 13%, BPD: 98 ± 11%), peak power output (Wpeak) (CF:67 ± 19 W, BPD:73 ± 28 W), % predicted Wpeak (CF:83 ± 28%, BPD:88 ± 15%), peak oxygen uptake (VO2peak, CF: 38 ± 7 ml/kg/min, BPD: 39 ±6 ml/kg/min), or % predicted VO2peak (CF:99 ± 16 %, BPD:96 ± 27%). Conclusions: Children with mild pulmonary impairments are able to achieve a near normal peak power output and a normal VO2peak. Neither the aetiology nor the developmental onset of the process appears to be important influences on VO2peak or Wpeak.


Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Benjamin J. Narang ◽  
Giorgio Manferdelli ◽  
Katja Kepic ◽  
Alexandros Sotiridis ◽  
Damjan Osredkar ◽  
...  

Pre-term birth is associated with numerous cardio-respiratory sequelae in children. Whether these impairments impact the responses to exercise in normoxia or hypoxia remains to be established. Fourteen prematurely-born (PREM) (Mean ± SD; gestational age 29 ± 2 weeks; age 9.5 ± 0.3 years), and 15 full-term children (CONT) (gestational age 39 ± 1 weeks; age 9.7 ± 0.9 years), underwent incremental exercise tests to exhaustion in normoxia (FiO2 = 20.9%) and normobaric hypoxia (FiO2 = 13.2%) on a cycle ergometer. Cardio-respiratory variables were measured throughout. Peak power output was higher in normoxia than hypoxia (103 ± 17 vs. 77 ± 18 W; p < 0.001), with no difference between CONT and PREM (94 ± 23 vs. 86 ± 19 W; p = 0.154). V̇O2peak was higher in normoxia than hypoxia in CONT (50.8 ± 7.2 vs. 43.8 ± 9.9 mL·kg−1·min−1; p < 0.001) but not in PREM (48.1 ± 7.5 vs. 45.0 ± 6.8 mL·kg−1·min−1; p = 0.137; interaction p = 0.044). Higher peak heart rate (187 ± 11 vs. 180 ± 10 bpm; p = 0.005) and lower stroke volume (72 ± 13 vs. 77 ± 14 mL; p = 0.004) were observed in normoxia versus hypoxia in CONT, with no such differences in PREM (p = 0.218 and > 0.999, respectively). In conclusion, premature birth does not appear to exacerbate the negative effect of hypoxia on exercise capacity in children. Further research is warranted to identify whether prematurity elicits a protective effect, and to clarify the potential underlying mechanisms.


1997 ◽  
Vol 22 (5) ◽  
pp. 454-467 ◽  
Author(s):  
William H. Cooke ◽  
William S. Barnes

The purpose of this study was to determine the effects of creatine supplementation on the ability to reproduce and maintain a high percentage of peak power output during the second of two bouts of high-intensity cycle sprinting following four different recovery intervals. Eighty healthy, active male subjects were randomly assigned to one of two groups (creatine or placebo) and one of four recovery intervals (30, 60, 90, or 120 s). Two maximal cycle ergometer sprints, separated by the assigned recovery interval were performed before and after a 5-day supplementation protocol in which 20 g/day of creatine (plus 4 g/day glucose) or 24 g/day glucose placebo were ingested by subjects from creatine and placebo groups, respectively. Maximal peak power output (PP) and the absolute time to fatigue (TTF) were compared pre- versus postsupplementation. No significant group interactions were noted in this study. Specifically, creatine supplementation had no effect on subjects' ability to reproduce or maintain a high percentage of PP during the second bout of exercise. Key words: ergogenic aids, cycle ergometry, short-term fatigue


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Colin Carriker ◽  
Phillip Armentrout ◽  
Sarah Levine ◽  
James Smoliga

Introduction: Previous studies have examined dietary nitrate supplementation and its effects on dry static apnea, and peak power. Dietary nitrate supplementation has been found to increase maximal apnea and peak power output. The purpose of this study was to determine the effects of beetroot juice on dry static apnea and Wingate performance. Hypothesis: Dietary nitrate will improve maximal breath hold time and peak power output. Dietary nitrate will improve tolerance to CO2, thereby improving maximal breath hold time and anaerobic capacity. Methods: In a randomized, double-blind, counterbalanced study, five healthy males (20.4±0.89 years) visited the lab on 3 separate occasions each separated by one week. Visit 1 served as a Wingate and breath hold familiarization visit. Prior to visits 2 and 3 participants were instructed to drink a beverage either a placebo (negligible nitrate content, PL) or dietary nitrate rich beverage (12.4 mmol nitrate, NIT) during the 4 days leading up to their next visit. Visits 2 and 3 consisted of two submaximal breath holds (80% of maximal determined during visit 1), with 2 minutes of rest between and three minutes of rest preceding the final breath hold for maximal duration. Finally, participants completed a standardized 10-minute warmup on the cycle ergometer before completing a 30-second maximal effort Wingate test. Results: A linear mixed effects model was used to determine whether treatment (NIT vs. PL) was associated with differences in VCO2 or PetCO2. Time (0, 10, 20, 30 min post-breath hold) and Treatment both served as repeated measures. Models were developed using multiple repeated measures covariance matrix structures, and the model with the lowest AIC was chosen as the final model. The interaction between time and treatment was included in the original models, and was removed if it was not statistically significant. Time was a statistically significant factor for VCO2 and PetCO2 (p < 0.001). Treatment, and the Time x Treatment interaction was not significant for either variable. No differences between NIT and PL were observed during the Wingate test for either time to peak power (5.02±2.45 and 6.2±2.43 sec, respectively) or maximal power (9.73±1.01 and 9.72±1.03 watts/kg, respectively) and fatigue index (49.42±14.98 and 47.30±6.99 watts/sec, respectively). Conclusion: Preliminary data indicates that in a general population four days of dietary nitrate supplementation may not improve breath hold time, tolerance to carbon dioxide in the lungs, or Wingate performance.


1996 ◽  
Vol 271 (2) ◽  
pp. C676-C683 ◽  
Author(s):  
J. J. Widrick ◽  
S. W. Trappe ◽  
D. L. Costill ◽  
R. H. Fitts

Gastrocnemius muscle fiber bundles were obtained by needle biopsy from five middle-aged sedentary men (SED group) and six age-matched endurance-trained master runners (RUN group). A single chemically permeabilized fiber segment was mounted between a force transducer and a position motor, subjected to a series of isotonic contractions at maximal Ca2+ activation (15 degrees C), and subsequently run on a 5% polyacrylamide gel to determine myosin heavy chain composition. The Hill equation was fit to the data obtained for each individual fiber (r2 > or = 0.98). For the SED group, fiber force-velocity parameters varied (P < 0.05) with fiber myosin heavy chain expression as follows: peak force, no differences: peak tension (force/fiber cross-sectional area), type IIx > type IIa > type I; maximal shortening velocity (Vmax, defined as y-intercept of force-velocity relationship), type IIx = type IIa > type I; a/Pzero (where a is a constant with dimensions of force and Pzero is peak isometric force), type IIx > type IIa > type I. Consequently, type IIx fibers produced twice as much peak power as type IIa fibers, whereas type IIa fibers produced about five times more peak power than type I fibers. RUN type I and IIa fibers were smaller in diameter and produced less peak force than SED type I and IIa fibers. The absolute peak power output of RUN type I and IIa fibers was 13 and 27% less, respectively, than peak power of similarly typed SED fibers. However, type I and IIa Vmax and a/Pzero were not different between the SED and RUN groups, and RUN type I and IIa power deficits disappeared after power was normalized for differences in fiber diameter. Thus the reduced absolute peak power output of the type I and IIa fibers from the master runners was a result of the smaller diameter of these fibers and a corresponding reduction in their peak isometric force production. This impairment in absolute peak power production at the single fiber level may be in part responsible for the reduced in vivo power output previously observed for endurance-trained athletes.


Sign in / Sign up

Export Citation Format

Share Document