scholarly journals Warming Up Before a 20-Minute Endurance Effort: Is It Really Worth It?

2020 ◽  
Vol 15 (7) ◽  
pp. 964-970
Author(s):  
David Barranco-Gil ◽  
Lidia B. Alejo ◽  
Pedro L. Valenzuela ◽  
Jaime Gil-Cabrera ◽  
Almudena Montalvo-Pérez ◽  
...  

Purpose: To analyze the effects of different warm-up protocols on endurance-cycling performance from an integrative perspective (by assessing perceptual, neuromuscular, physiological, and metabolic variables). Methods: Following a randomized crossover design, 15 male cyclists (35 [9] y; peak oxygen uptake [VO2peak] 66.4 [6.8] mL·kg−1·min−1) performed a 20-minute cycling time trial (TT) preceded by no warm-up, a standard warm-up (10 min at 60% of VO2peak), or a warm-up that was intended to induce potentiation postactivation (PAP warm-up; 5 min at 60% of VO2peak followed by three 10-s all-out sprints). Study outcomes were jumping ability and heart-rate variability (both assessed at baseline and before the TT), TT performance (mean power output), and perceptual (rating of perceived exertion) and physiological (oxygen uptake, muscle oxygenation, heart-rate variability, blood lactate, and thigh skin temperature) responses during and after the TT. Results: Both standard and PAP warm-up (9.7% [4.7%] and 12.9% [6.5%], respectively, P < .001), but not no warm-up (−0.9% [4.8%], P = .074), increased jumping ability and decreased heart-rate variability (−7.9% [14.2%], P = .027; −20.3% [24.7%], P = .006; and −1.7% [10.5%], P = .366). Participants started the TT (minutes 0–3) at a higher power output and oxygen uptake after PAP warm-up compared with the other 2 protocols (P < .05), but no between-conditions differences were found overall for the remainder of outcomes (P > .05). Conclusions: Compared with no warm-up, warming up enhanced jumping performance and sympathetic modulation before the TT, and the inclusion of brief sprints resulted in a higher initial power output during the TT. However, no warm-up benefits were found for overall TT performance or for perceptual or physiological responses during the TT.

2020 ◽  
Vol 127 (5) ◽  
pp. 912-924 ◽  
Author(s):  
Morgan C. Karow ◽  
Rebecca R. Rogers ◽  
Joseph A. Pederson ◽  
Tyler D. Williams ◽  
Mallory R. Marshall ◽  
...  

This study investigated the effects of preferred and non-preferred warm-up music listening conditions on subsequent exercise performance. A total of 12 physically active male and female participants engaged in a crossover, counterbalanced research design in which they completed exercise trials after 3 different warm-up experiences of (a) no music (NM), (b) preferred music (PREF), and (c) nonpreferred music (NON-PREF). Participants began warming up by rowing at 50% of of age-predicted heart rate maximum (HRmax) for 5 minutes while exposed to the three music conditions. Immediately following the warm-up and cessation of any music, participants completed a 2000-m rowing time trial as fast as possible. Relative power output, trial time, heart rate, rating of perceived exertion, and motivation were analyzed. Results indicated that, compared with NM, relative power output was significantly higher ( p  =   .018), trial time was significantly lower ( p  =   .044), and heart rate was significantly higher ( p  =   .032) during the PREF but not the NON-PREF condition. Rating of perceived exertion was not altered, regardless of music condition ( p > .05). Motivation to exercise was higher during the PREF condition versus the NM ( p  =   .001) and NON-PREF ( p <  .001) conditions. Listening to preferred warm-up music improved subsequent exercise performance compared with no music, while nonpreferred music did not impart ergogenic benefit.


2009 ◽  
Vol 19 (4) ◽  
pp. 400-409 ◽  
Author(s):  
Milou Beelen ◽  
Jort Berghuis ◽  
Ben Bonaparte ◽  
Sam B. Ballak ◽  
Asker E. Jeukendrup ◽  
...  

It has been reported previously that mouth rinsing with a carbohydrate-containing solution can improve cycling performance. The purpose of the current study was to investigate the impact of such a carbohydrate mouth rinse on exercise performance during a simulated time trial in a more practical, postprandial setting. Fourteen male endurance-trained athletes were selected to perform 2 exercise tests in the morning after consuming a standardized breakfast. They performed an ~1-hr time trial on a cycle ergometer while rinsing their mouths with either a 6.4% maltodextrin solution (CHO) or water (PLA) after every 12.5% of the set amount of work. Borg’s rating of perceived exertion (RPE) was assessed after every 25% of the set amount of work, and power output and heart rate were recorded continuously throughout the test. Performance time did not differ between treatments and averaged 68.14 ± 1.14 and 67.52 ± 1.00 min in CHO and PLA, respectively (p = .57). In accordance, average power output (265 ± 5 vs. 266 ± 5 W, p = .58), heart rate (169 ± 2 vs. 168 ± 2 beats/min, p = .43), and RPE (16.4 ± 0.3 vs. 16.7 ± 0.3 W, p = .26) did not differ between treatments. Furthermore, after dividing the trial into 8s, no differences in power output, heart rate, or perceived exertion were observed over time between treatments. Carbohydrate mouth rinsing does not improve time-trial performance when exercise is performed in a practical, postprandial setting.


2007 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Thomas Zochowski ◽  
Elizabeth Johnson ◽  
Gordon G. Sleivert

Context:Warm-up before athletic competition might enhance performance by affecting various physiological parameters. There are few quantitative data available on physiological responses to the warm-up, and the data that have been reported are inconclusive. Similarly, it has been suggested that varying the recovery period after a standardized warm-up might affect subsequent performance.Purpose:To determine the effects of varying post-warm-up recovery time on a subsequent 200-m swimming time trial.Methods:Ten national-caliber swimmers (5 male, 5 female) each swam a 1500-m warm-up and performed a 200-m time trial of their specialty stroke after either 10 or 45 min of passive recovery. Subjects completed 1 time trial in each condition separated by 1 wk in a counterbalanced order. Blood lactate and heart rate were measured immediately after warm-up and 3 min before, immediately after, and 3 min after the time trial. Rating of perceived exertion was measured immediately after the warm-up and time trial.Results:Time-trial performance was significantly improved after 10 min as opposed to 45 min recovery (136.80 ± 20.38 s vs 138.69 ± 20.32 s, P < .05). There were no significant differences between conditions for heart rate and blood lactate after the warm-up. Pre-time-trial heart rate, however, was higher in the 10-min than in the 45-min rest condition (109 ± 14 beats/min vs 94 ± 21 beats/min, P < .05).Conclusions:A post-warm-up recovery time of 10 min rather than 45 min is more beneficial to 200-m swimming time-trial performance.


2019 ◽  
Vol 14 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Alejandro Javaloyes ◽  
Jose Manuel Sarabia ◽  
Robert Patrick Lamberts ◽  
Manuel Moya-Ramon

Purpose: Road cycling is a sport with extreme physiological demands. Therefore, there is a need to find new strategies to improve performance. Heart-rate variability (HRV) has been suggested as an effective alternative for prescribing training load against predefined training programs. The purpose of this study was to examine the effect of training prescription based on HRV in road cycling performance. Methods: Seventeen well-trained cyclists participated in this study. After an initial evaluation week, cyclists performed 4 baseline weeks of standardized training to establish their resting HRV. Then, cyclists were divided into 2 groups, an HRV-guided group and a traditional periodization group, and they carried out 8 training weeks. Cyclists performed 2 evaluation weeks, after and before a training week. During the evaluation weeks, cyclists performed a graded exercise test to assess maximal oxygen uptake, peak power output, and ventilatory thresholds with their corresponding power output (VT1, VT2, WVT1, and WVT2, respectively) and a 40-min simulated time trial. Results: The HRV-guided group improved peak power output (5.1% [4.5%]; P = .024), WVT2 (13.9% [8.8%]; P = .004), and 40-min all-out time trial (7.3% [4.5%]; P = .005). Maximal oxygen uptake and WVT1 remained similar. The traditional periodization group did not improve significantly after the training week. There were no differences between groups. However, magnitude-based inference analysis showed likely beneficial and possibly beneficial effects for the HRV-guided group instead of the traditional periodization group in 40-min all-out time trial and peak power output, respectively. Conclusion: Daily training prescription based on HRV could result in a better performance enhancement than a traditional periodization in well-trained cyclists.


Author(s):  
Mohamed Frikha ◽  
Nesrine Chaâri ◽  
Noureddine Ben Said ◽  
Mohammed Shaab Alibrahim

Abstract Background This study addressed the lack of data on the effect of warm-up (WU) duration in hot-dry climate (~ 30 °C; ~ 18% RH), on thermoregulation, muscular power-output, and fatigue after specific soccer repeated-sprint test (RSA). Methods Eleven amateur soccer players participated in a cross-over randomized study and they underwent the Bangsbo repeated-sprint test, after three WU durations (i.e. WU10, WU15 and WU20 min) at 70% of MAV, and on different days. Peak power (PP), mean power (MP) and the fatigue index (FI) were recorded and analyzed. Likewise, heart rate (HR), tympanic temperature (Ttym), mean body temperature (MBT) and rating of perceived exertion (RPE) were recorded during each session. Results The repeated measure ANOVA showed that MP improved after WU15 in comparison to WU10 and WU20 (p = 0.04 and p = 0.001; respectively). Nonetheless, no significant effect on PP was recorded after all WU durations. FI during RSA increased after WU20 in comparison to WU15 and WU10 (p < 0.001 and p = 0.003; respectively). Higher RPE values (p < 0.001) were recorded after WU15 and WU20 in comparison to WU10 duration. The two-way ANOVA showed higher ΔTtym and ΔMBT values after WU15 and WU20 compared to WU10 (p = 0.039 and p < 0.001for Ttym; p = 0.005 and p < 0.001 for MBT, respectively). Conclusions The WU15 at 70% of MAV better assists mean power-output during soccer RSA in hot-dry (~ 30 °C; 18% RH) climate, but not peak power. Reducing WU duration up to 10 min seems to be insufficient to induce beneficial physiological changes necessary for optimizing repeated-sprint performance, while its extension up to 20 min remains detrimental for muscular power and induces higher fatigue.


2010 ◽  
Vol 35 (5) ◽  
pp. 650-656 ◽  
Author(s):  
Richard J. Simpson ◽  
Scott M. Graham ◽  
Geraint D. Florida-James ◽  
Christopher Connaboy ◽  
Richard Clement ◽  
...  

Identifying field measures to estimate backpack load-carriage work intensity in elite soldiers is of interest to the military. This study developed rating of perceived exertion (RPE) and heart rate models to define metabolic workload for a backpack load-carriage task valid for a population of elite soldiers using serial data. Male soldiers (n = 18) from the British Parachute or Special Air Service Regiment completed an incremental treadmill walking and (or) running protocol while carrying a 20-kg backpack. Heart rate, RPE, and oxygen uptake were recorded at each incremental stage of the protocol. Linear mixed models were used to model the RPE and heart rate data in the metric of measured peak oxygen uptake. Workload was accurately estimated using RPE alone (SE = 6.03), percentage of estimated maximum heart rate (%E-MHR) (SE = 6.9), and percentage of measured maximum heart rate (%M-MHR) (SE = 4.9). Combining RPE and %E-MHR resulted in a field measure with an accuracy (SE = 4.9) equivalent to the %M-MHR model. We conclude that RPE, %E-MHR, and %M-MHR provide accurate field-based proxy measures of metabolic workload in elite British soldiers performing a backpack load-carriage task. The model is accurate for the metabolic range measured by these serial data for the backpack load-carriage task.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3797
Author(s):  
Aline V. Caris ◽  
Ronaldo V. Thomatieli-Santos

The rating of perceived exertion (RPE) indicates the feeling of fatigue. However, hypoxia worsens the condition and can worsen RPE. We evaluated whether carbohydrate and glutamine supplementation alters RPE and physiological markers in running at 70% peak oxygen uptake until exhaustion in a simulated altitude of 4500 m. Nine volunteers underwent three running tests at 70% peak oxygen uptake until exhaustion: (1) hypoxia and placebo, (2) hypoxia and 8% maltodextrin, and (3) hypoxia after six days of glutamine supplementation (20 g/day) and 8% maltodextrin. The exercise and supplementation were randomized and double-blinded. Lactate, heart rate, haemoglobin O2 saturation (SpO2%), and RPE (6–20 scale) were analyzed at the 15th and 30th min. The level of significance was set at p ≤ 0.05. SpO2% decreased at the 15th and 30th minutes compared to resting in placebo, carbohydrate, and glutamine supplementation. RPE increased at the 30th minute compared to the 15th minute in placebo and carbohydrate supplementation; however, there was no difference in the glutamine supplementation condition. Heart rate and lactate increased after the 15th and 30th minutes compared to resting, similar to the three conditions studied. We conclude that previous supplementation with glutamine and carbohydrate during intense exercise in hypoxia similar to 4500 m can attenuate the increase in RPE by the increase in glycemia and can be a useful strategy for people who exercise in these conditions.


2016 ◽  
Vol 11 (8) ◽  
pp. 1024-1028 ◽  
Author(s):  
Sam S.X. Wu ◽  
Jeremiah J. Peiffer ◽  
Peter Peeling ◽  
Jeanick Brisswalter ◽  
Wing Y. Lau ◽  
...  

Purpose:To investigate the effect of 3 swim-pacing profiles on subsequent performance during a sprint-distance triathlon (SDT). Methods:Nine competitive/trained male triathletes completed 5 experimental sessions including a graded running exhaustion test, a 750-m swim time trial (STT), and 3 SDTs. The swim times of the 3 SDTs were matched, but pacing was manipulated to induce positive (ie, speed gradually decreasing from 92% to 73% STT), negative (ie, speed gradually increasing from 73% to 92% STT), or even pacing (constant 82.5% STT). The remaining disciplines were completed at a self-selected maximal pace. Speed over the entire triathlon, power output during the cycle discipline, rating of perceived exertion (RPE) for each discipline, and heart rate during the cycle and run were determined. Results:Faster cycle and overall triathlon times were achieved with positive swim pacing (30.5 ± 1.8 and 65.9 ± 4.0 min, respectively), as compared with the even (31.4 ± 1.0 min, P = .018 and 67.7 ± 3.9 min, P = .034, effect size [ES] = 0.46, respectively) and negative (31.8 ± 1.6 min, P = .011 and 67.3 ± 3.7 min, P = .041, ES = 0.36, respectively) pacing. Positive swim pacing elicited a lower RPE (9 ± 2) than negative swim pacing (11 ± 2, P = .014). No differences were observed in the other measured variables. Conclusions:A positive swim pacing may improve overall SDT performance and should be considered by both elite and age-group athletes during racing.


Author(s):  
Natalia Danek ◽  
Marcin Smolarek ◽  
Kamil Michalik ◽  
Marek Zatoń

Background: Knowledge of acute responses to different sprint interval exercise (SIE) helps to implement new training programs. The aim of this study was to compare the acute physiological, metabolic and perceptual responses to two different SIE cycling protocols with different recovery durations. Methods: Twelve healthy, active male participants took part in this study and completed four testing sessions in the laboratory separated by a minimum of 72h. Two SIE protocols were applied in randomized order: SIE6×10”/4’—six “all-out” repeated 10-s bouts, interspersed with 4-min recovery; and SIESERIES—two series of three “all-out” repeated 10-s bouts, separated by 30-s recovery and 18-min recovery between series. Protocols were matched for the total work time (1 min) and recovery (20 min). Results: In SIESERIES, peak oxygen uptake and peak heart rate were significantly higher (p < 0.05), without differences in peak blood lactate concentration and mean rating of perceived exertion compared to SIE6×10”/4’. There were no differences in peak power output, peak oxygen uptake and peak heart rate between both series in SIESERIES. Conclusions: Two series composed of three 10-s “all-out” bouts in SIESERIES protocol evoked higher cardiorespiratory responses, which can provide higher stimulus to improve aerobic fitness in regular training.


2014 ◽  
Vol 39 (2) ◽  
pp. 124-129 ◽  
Author(s):  
Joseph Fleming ◽  
Lewis J. James

This study examined the effect of repeated familiarisation to hypohydration on hypohydrated exercise performance. After familiarisation with the exercise protocol, 10 recreationally active males completed a euhydrated (EU-pre) and hypohydrated (HYPO-pre) trial, which involved a 45-min steady state run at 75% peak oxygen uptake (45SS) followed by a 5-km time trial (TT). Euhydration and hypohydration were induced by manipulating fluid intake in the 24-h pre-exercise and during the 45SS. Subjects then completed 4 habituation sessions that involved replication of the HYPO-pre trial, except they completed 60 min of running at 75% peak oxygen uptake and no TT. Subjects then replicated the euhydrated (EU-post) and hypohydrated (HYPO-post) trials. Body mass loss pre-TT was 0.2 (0.2)% (EU-pre), 2.4 (0.3)% (HYPO-pre), 0.1 (0.1)% (EU-post), and 2.4 (0.3)% (HYPO-post). TT performance was 5.8 (2.4)% slower during the HYPO-pre trial (1459 (250) s) than during the EU-pre trial (1381 (237) s) (p < 0.01), but only 1.2 (1.6)% slower during the HYPO-post trial (1381 (200) s) than during the EU-post trial (1366 (211) s) (p = 0.064). TT performance was not different between EU-pre and EU-post trials, but was 5.1 (2.3)% faster during the HYPO-post trial than the HYPO-pre trial (p < 0.01). Heart rate was greater during HYPO trials than EU trials (p < 0.001), whilst rating of perceived exertion (RPE) response was similar to TT time and was lower in the HYPO-post trial than the HYPO-pre trial (p < 0.01). In conclusion, hypohydration impaired 5-km running performance in subjects unfamiliar with the hypohydration protocol, but 4 familiarisation sessions designed to habituate subjects with the hypohydration protocol attenuated the performance decrement, seemingly via an attenuation of RPE during hypohydrated exercise.


Sign in / Sign up

Export Citation Format

Share Document