scholarly journals Energy Expenditure of Daily Living Activities in 3- to 6-Year-Old Children

2016 ◽  
Vol 13 (s1) ◽  
pp. S3-S6 ◽  
Author(s):  
Wonwoo Byun ◽  
Allison Barry ◽  
Jung-Min Lee

Background:There has been a call for updating the Youth Compendium of Energy Expenditure (YCEE) by including energy expenditure (EE) data of young children (ie, < 6-year-old children). Therefore, this study examined the activity EE in 3 to 6 year old children using indirect calorimetry.Methods: Using Oxycon Mobile portable indirect calorimetry, both the oxygen consumption (VO2) and the EE of 28 children (Girls: 46%, Age: 4.8 ± 1.0, BMI: 16.4 ± 1.6) were measured while they performed various daily living activities (eg, watching TV, playing with toys, shooting baskets, soccer).Results:Across physical activities, averages of VO2 (ml·kg·min-1), VO2 (L·min-1), and EE ranged from 8.9 ± 1.5 to 33.3 ± 4.8 ml·kg·min-1, from 0.17 ± 0.04 to 0.64 ± 0.16 L·min-1, and from 0.8 ± 0.2 to 3.2 ± 0.7 kcal·min-1, respectively.Conclusions:These findings will contribute to the upcoming YCEE update.

2016 ◽  
Vol 13 (s1) ◽  
pp. S48-S52 ◽  
Author(s):  
Yong Gao ◽  
Haichun Sun ◽  
Jie Zhuang ◽  
Jian Zhang ◽  
Lynda Ransdell ◽  
...  

Background:This study determined the metabolic equivalents (METs) of several activities typically performed by Chinese youth.Methods:Thirty youth (12 years) performed 7 activities that reflected their daily activities while Energy Expenditure (EE) was measured in a metabolic chamber.Results:METs were calculated as activity EE divided by participant’s measured resting metabolic rate. A MET value ranging from 0.8 to 1.2 was obtained for sleeping, watching TV, playing computer games, reading and doing homework. Performing radio gymnastics had a MET value of 2.9. Jumping rope at low effort required 3.1 METs. Except for watching TV, METs for other activities in this study were lower than Youth Compendium values.Conclusions:The results provide empirical evidence for more accurately assessing EE of activities commonly performed by Chinese youth. This is the first study to determine METs for radio gymnastics and jump rope in Chinese youth.


2004 ◽  
Vol 82 (12) ◽  
pp. 1075-1083 ◽  
Author(s):  
Marc Riachi ◽  
Jean Himms-Hagen ◽  
Mary-Ellen Harper

Indirect calorimetry is commonly used in research and clinical settings to assess characteristics of energy expenditure. Respiration chambers in indirect calorimetry allow measurements over long periods of time (e.g., hours to days) and thus the collection of large sets of data. Current methods of data analysis usually involve the extraction of only a selected small proportion of data, most commonly the data that reflects resting metabolic rate. Here, we describe a simple quantitative approach for the analysis of large data sets that is capable of detecting small differences in energy metabolism. We refer to it as the percent relative cumulative frequency (PRCF) approach and have applied it to the study of uncoupling protein-1 (UCP1) deficient and control mice. The approach involves sorting data in ascending order, calculating their cumulative frequency, and expressing the frequencies in the form of percentile curves. Results demonstrate the sensitivity of the PRCF approach for analyses of oxygen consumption ([Formula: see text]02) as well as respiratory exchange ratio data. Statistical comparisons of PRCF curves are based on the 50th percentile values and curve slopes (H values). The application of the PRCF approach revealed that energy expenditure in UCP1-deficient mice housed and studied at room temperature (24 °C) is on average 10% lower (p < 0.0001) than in littermate controls. The gradual acclimation of mice to 12 °C caused a near-doubling of [Formula: see text] in both UCP1-deficient and control mice. At this lower environmental temperature, there were no differences in [Formula: see text] between groups. The latter is likely due to augmented shivering thermogenesis in UCP1-deficient mice compared with controls. With the increased availability of murine models of metabolic disease, indirect calorimetry is increasingly used, and the PRCF approach provides a novel and powerful means for data analysis.Key words: thermogenesis, oxygen consumption, metabolic rate, uncoupling protein, UCP.


2016 ◽  
Vol 13 (s1) ◽  
pp. S57-S61 ◽  
Author(s):  
Alison L. Innerd ◽  
Liane B. Azevedo

Background:The aim of this study is to establish the energy expenditure (EE) of a range of child-relevant activities and to compare different methods of estimating activity MET.Methods:27 children (17 boys) aged 9 to 11 years participated. Participants were randomly assigned to 1 of 2 routines of 6 activities ranging from sedentary to vigorous intensity. Indirect calorimetry was used to estimate resting and physical activity EE. Activity metabolic equivalent (MET) was determined using individual resting metabolic rate (RMR), the Harrell-MET and the Schofield equation.Results:Activity EE ranges from 123.7± 35.7 J/min/Kg (playing cards) to 823.1 ± 177.8 J/min/kg (basketball). Individual RMR, the Harrell-MET and the Schofield equation MET prediction were relatively similar at light and moderate but not at vigorous intensity. Schofield equation provided a better comparison with the Compendium of Energy Expenditure for Youth.Conclusion:This information might be advantageous to support the development of a new Compendium of Energy Expenditure for Youth.


1994 ◽  
Vol 266 (6) ◽  
pp. E877-E884 ◽  
Author(s):  
A. V. Kurpad ◽  
K. Khan ◽  
A. G. Calder ◽  
M. Elia

The effect of an infusion of norepinephrine (0.42 nmol.kg-1.min-1) on energy metabolism in the whole body (using indirect calorimetry and the arteriovenous forearm catheterization techniques in eight healthy young male adults. The activity of the triglyceride-fatty acid cycle, which mainly operates in nonmuscular tissues, was also assessed by measuring glycerol turnover using [2H5]glycerol (to indicate lipolysis) and indirect calorimetry (to indicate net fat oxidation). Norepinephrine increased whole body oxygen consumption by almost 10% (P < 0.01), but the estimated oxygen consumption of muscles tended to decrease. Muscle blood flow (measured by 133Xe) and forearm blood flow (measured by strain-gauge plethysmography) were not significantly affected by norepinephrine, but the rate of uptake of nonesterified fatty acids and beta-hydroxybutyrate increased severalfold (P < 0.05), whereas that of glucose did not. The activity of the triglyceride-fatty acid cycle increased fourfold after norepinephrine administration, having a marginal effect on resting energy expenditure (approximately 1.5%) but accounting for approximately 15% of the increase in whole body energy expenditure. This study provides no evidence that skeletal muscle is an important site for norepinephrine-induced thermogenesis and suggests that an increase in the activity of the triglyceride-fatty acid cycle contributes to the norepinephrine-induced increase in energy expenditure of nonmuscular tissues.


2016 ◽  
Vol 13 (s1) ◽  
pp. S62-S70 ◽  
Author(s):  
Jung-Min Lee ◽  
Pedro F. Saint-Maurice ◽  
Youngwon Kim ◽  
Glenn A. Gaesser ◽  
Gregory Welk

Background:The assessment of physical activity (PA) and energy expenditure (EE) in youth is complicated by inherent variability in growth and maturation during childhood and adolescence. This study provides descriptive summaries of the EE of a diverse range of activities in children ages 7 to 13.Methods:A sample of 105 7- to 13-year-old children (boys: 57%, girls: 43%, and Age: 9.9 ± 1.9) performed a series of 12 activities from a pool of 24 activities while being monitored with an indirect calorimetry system.Results:Across physical activities, averages of VO2 ml·kg·min-1, VO2 L·min-1, EE, and METs ranged from 3.3 to 53.7 ml·kg·min-1, from 0.15 to 3.2 L·min-1, from 0.7 to 15.9 kcal·min-1, 1.5 MET to 7.8 MET, respectively.Conclusions:The energy costs of the activities varied by age, sex, and BMI status reinforcing the need to consider adjustments when examining the relative intensity of PA in youth.


2012 ◽  
Vol 24 (4) ◽  
pp. 519-536 ◽  
Author(s):  
Sofiya Alhassan ◽  
Kate Lyden ◽  
Cheryl Howe ◽  
Sarah Kozey Keadle ◽  
Ogechi Nwaokelemeh ◽  
...  

This study examined the validity of commonly used regression equations for the Actigraph and Actical accelerometers in predicting energy expenditure (EE) in children and adolescents. Sixty healthy (8–16 yrs) participants completed four treadmill (TM) and five self-paced activities of daily living (ADL). Four Actigraph (AG) and three Actical (AC) regression equations were used to estimate EE. Bias (±95% CI) and root mean squared errors were used to assess the validity of the regression equations compared with indirect calorimetry. For children, the Freedson (AG) model accurately predicted EE for all activities combined and the Treuth (AG) model accurately predicted EE for TM activities. For adolescents, the Freedson model accurately predicted EE for TM activities and the Treuth model accurately predicted EE for all activities and for TM activities. No other equation accurately estimated EE. The percent agreement for the AG and AC equations were better for light and vigorous compared with moderate intensity activities. The Trost (AG) equation most accurately classified all activity intensity categories. Overall, equations yield inconsistent point estimates of EE.


2016 ◽  
Vol 13 (9) ◽  
pp. 1017-1022 ◽  
Author(s):  
Steven J. Howard ◽  
Caylee J. Cook ◽  
Rihlat Said-Mohamed ◽  
Shane A. Norris ◽  
Catherine E. Draper

Background:An area of growth in physical activity research has involved investigating effects of physical activity on children’s executive functions. Many of these efforts seek to increase the energy expenditure of young children as a healthy and low-cost way to affect physical, health, and cognitive outcomes.Methods:We review theory and research from neuroscience and evolutionary biology, which suggest that interventions seeking to increase the energy expenditure of young children must also consider the energetic trade-offs that occur to accommodate changing metabolic costs of brain development.Results:According to Life History Theory, and supported by recent evidence, the high relative energy-cost of early brain development requires that other energy-demanding functions of development (ie, physical growth, activity) be curtailed. This is important for interventions seeking to dramatically increase the energy expenditure of young children who have little excess energy available, with potentially negative cognitive consequences. Less energy-demanding physical activities, in contrast, may yield psychosocial and cognitive benefits while not overburdening an underweight child’s already scarce energy supply.Conclusions:While further research is required to establish the extent to which increases in energy-demanding physical activities may compromise or displace energy available for brain development, we argue that action cannot await these findings.


2007 ◽  
Vol 39 (Supplement) ◽  
pp. S182
Author(s):  
Christel Galvani ◽  
Luca Andreoletti ◽  
Maurizio Besi ◽  
Marcello Faina

2019 ◽  
Vol 41 (1) ◽  
pp. 149-154
Author(s):  
Theodor S. Sigurdsson ◽  
Lars Lindberg

AbstractDirect Fick method is considered a standard reference method for estimation of cardiac output. It relies on indirect calorimetry to measure oxygen consumption. This is important as only a minor measurement error in oxygen consumption can result in false estimation of cardiac output. A number of studies have shown that indirect calorimetry overestimates oxygen consumption in adults. The aim of this prospective single center observational method comparison study was to compare the determination of oxygen consumption by indirect calorimetry and reverse Fick method in pediatric patients. Forty-two children mean age 352 days (range 30 to 1303 days) and mean weight 7.1 kg (range 2.7–13.6 kg) undergoing corrective cardiac surgery were included in the study. The mean (standard deviation) oxygen consumption by reverse Fick method was 43.5 (16.2) ml/min and by indirect calorimetry 49.9 (18.8) ml/min (p < 0.001). Indirect calorimetry overestimated the reverse Fick oxygen consumption by 14.7%. Bias between methods was 6.5 (11.3) ml/min, limits of agreement (LOA) − 15.7 and 28.7 ml/min and percentage error of 47.7%. A significant bias and large percentage error indicates that the methods are not interchangeable. Indirect calorimetry and the direct Fick method should be used with caution as a reference method in cardiac output comparison studies in young children.


2007 ◽  
Vol 19 (3) ◽  
pp. 334-343 ◽  
Author(s):  
Ralph Maddison ◽  
Cliona Ni Mhurchu ◽  
Andrew Jull ◽  
Yannan Jiang ◽  
Harry Prapavessis ◽  
...  

This study sought to quantify the energy expenditure and physical activity associated with playing the “new generation” active and nonactive console-based video games in 21 children ages 10–14 years. Energy expenditure (kcal) derived from oxygen consumption (VO2) was continuously assessed while children played nonactive and active console video games. Physical activity was assessed continuously using the Actigraph accelerometer. Significant (p < .001) increases from baseline were found for energy expenditure (129–400%), heart rate (43–84%), and activity counts (122–1,288 versus 0–23) when playing the active console video games. Playing active console video games over short periods of time is similar in intensity to light to moderate traditional physical activities such as walking, skipping, and jogging.


Sign in / Sign up

Export Citation Format

Share Document