Extracellular Quaternary Ammonium Blockade of Transient Receptor Potential Vanilloid Subtype 1 Channels Expressed in Xenopus laevis Oocytes

2012 ◽  
Vol 82 (6) ◽  
pp. 1129-1135 ◽  
Author(s):  
Ricardo E. Rivera-Acevedo ◽  
Stephan A. Pless ◽  
Stephan K. W. Schwarz ◽  
Christopher A. Ahern
2008 ◽  
Vol 109 (5) ◽  
pp. 872-878 ◽  
Author(s):  
Peter Gerner ◽  
Alexander M. Binshtok ◽  
Chi-Fei Wang ◽  
Nathanael D. Hevelone ◽  
Bruce P. Bean ◽  
...  

Background Transient receptor potential vanilloid 1 channels integrate nociceptive stimuli and are predominantly expressed by unmyelinated C-fiber nociceptors, but not low-threshold mechanoreceptive sensory or motor fibers. A recent report showed that the transient receptor potential vanilloid 1 channel agonist capsaicin allows a hydrophilic quaternary ammonium derivative of lidocaine, QX-314, to selectively block C fibers without motor block. The authors tested whether a similar differential block would be produced using amphipathic N-methyl amitriptyline, amitriptyline, bupivacaine, or lidocaine, either alone or together with 0.05% capsaicin, in a rat sciatic nerve block model. Methods Rats (n = 8/group) were anesthetized with sevoflurane, and 0.2 ml of drug was injected either alone or with capsaicin (simultaneously or 10 min later) next to the sciatic nerve in the sciatic notch. Motor function was assessed by the extensor postural thrust. Nociception was evaluated by the nocifensive withdrawal reflex and vocalization evoked by pinch of a skin fold over the lateral metatarsus (cutaneous pain) with a serrated forceps. Results N-Methyl amitriptyline, amitriptyline, bupivacaine, or lidocaine, followed by injection of capsaicin 10 min later, each elicited a predominantly nociceptive-specific blockade. In comparison, simultaneous application of each local anesthetic with capsaicin did not elicit a clinically significant differential block, with the exception of N-methyl amitriptyline. Conclusions Both tertiary amine local anesthetics and their quaternary ammonium derivatives can elicit a predominantly sensory/nociceptor selective block when followed by injection of capsaicin. The combined application of transient receptor potential vanilloid 1 channel agonists and various local anesthetics or their quaternary ammonium derivatives is an appealing strategy to achieve a long-lasting differential block in regional analgesia.


2011 ◽  
Vol 114 (6) ◽  
pp. 1425-1434 ◽  
Author(s):  
Ricardo E. Rivera-Acevedo ◽  
Stephan A. Pless ◽  
Christopher A. Ahern ◽  
Stephan K. W. Schwarz

Background Transient receptor potential vanilloid subfamily member 1 (TRPV1) channels are important integrators of noxious stimuli with pronounced expression in nociceptive neurons. The experimental local anesthetic, QX-314, a quaternary (i.e., permanently charged) lidocaine derivative, recently has been shown to interact with and permeate these channels to produce nociceptive and sensory blockade in animals in vivo. However, little is known about the specific interactions between QX-314 and TRPV1 channels. Thus, the authors examined the mechanistic basis by which QX-314 acts on TRPV1 channels. Methods The authors conducted an in vitro laboratory study in which they expressed TRPV1 and TRPV4 channels in Xenopus laevis oocytes and recorded cation currents with the two-electrode voltage clamp method. They used confocal microscopy for Ca²⁺ imaging in TRPV1 transient transfected tsA201 cells. Drugs were bath-applied by gravity perfusion. Statistical analyses were performed using Student t test, ANOVA, and post tests as appropriate (P < 0.05). Results QX-314 activated TRPV1 channels at 10, 30, and 60 mM (0.4 ± 0.1%, 3.5 ± 1.3%, and 21.5 ± 6.9% of normalized peak activation, respectively; mean ± SEM; n = 12) but not TRPV4 channels (P < 0.001). Activation by QX-314 was blocked by the TRPV1 antagonist, capsazepine (100 μM). QX-314 (60 mM) activation and blockade by capsazepine was also demonstrated in Ca²⁺ imaging studies on TRPV1-expressing tsA201 cells. At subactivating concentrations (less than 1 mM), QX-314 potently inhibited capsaicin-evoked TRPV1 currents with an IC₅₀ of 8.0 ± 0.6 μM. Conclusions The results of this study show that the quaternary lidocaine derivative QX-314 exerts biphasic effects on TRPV1 channels, inhibiting capsaicin-evoked TRPV1 currents at lower (micromolar) concentrations and activating TRPV1 channels at higher (millimolar) concentrations. These findings provide novel insights into the interactions between QX-314 and TRPV1 and may provide an explanation for the irritant properties of intrathecal QX-314 in mice in vivo.


Sign in / Sign up

Export Citation Format

Share Document