scholarly journals Targeting highly pathogenic coronavirus-induced apoptosis reduces viral pathogenesis and disease severity

2021 ◽  
Vol 7 (25) ◽  
pp. eabf8577
Author(s):  
Hin Chu ◽  
Huiping Shuai ◽  
Yuxin Hou ◽  
Xi Zhang ◽  
Lei Wen ◽  
...  

Infection by highly pathogenic coronaviruses results in substantial apoptosis. However, the physiological relevance of apoptosis in the pathogenesis of coronavirus infections is unknown. Here, with a combination of in vitro, ex vivo, and in vivo models, we demonstrated that protein kinase R–like endoplasmic reticulum kinase (PERK) signaling mediated the proapoptotic signals in Middle East respiratory syndrome coronavirus (MERS-CoV) infection, which converged in the intrinsic apoptosis pathway. Inhibiting PERK signaling or intrinsic apoptosis both alleviated MERS pathogenesis in vivo. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV induced apoptosis through distinct mechanisms but inhibition of intrinsic apoptosis similarly limited SARS-CoV-2– and SARS-CoV–induced apoptosis in vitro and markedly ameliorated the lung damage of SARS-CoV-2–inoculated human angiotensin-converting enzyme 2 (hACE2) mice. Collectively, our study provides the first evidence that virus-induced apoptosis is an important disease determinant of highly pathogenic coronaviruses and demonstrates that this process can be targeted to attenuate disease severity.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. sci-40-sci-40
Author(s):  
Emma C. Josefsson ◽  
Simone Schoenwaelder ◽  
Michael White ◽  
Matthew Goschnick ◽  
Andrew W. Roberts ◽  
...  

Abstract Human platelets exhibit a circulating lifespan of ~10 days, mouse platelets ~5 days. This finite existence is circumscribed by members of the Bcl-2 family of proteins, which control the intrinsic apoptosis pathway. Pro-survival Bcl-xL is the critical regulator of platelet lifespan, functioning to keep pro-death Bak and Bax in check, thereby maintaining platelet viability. After 5–10 days in the circulation, platelets not consumed in hemostatic processes initiate a Bak and Bax-dependent cell death program and clearance from the bloodstream. Mutations in Bcl-xL reduce platelet lifespan in a dose-dependent fashion, while deletion of Bak and Bax extend it. Studies with the BH3 mimetic compound ABT-737, which inhibits pro-survival Bcl-xL, have shown that platelets induced to undergo cell death in vitro exhibit many of the hallmarks of apoptosis in nucleated cells, including mitochondrial damage, caspase activation and externalization of membrane phosphatidylserine (PS). Whether any of these features occur during physiological platelet clearance remains unclear. Certainly, mitochondrial damage can reduce the recovery of transfused platelets, but whether PS – which is known to promote the pro-coagulant activity of agonist-activated platelets – also acts as a clearance signal for dying platelets in vivo is yet to be established. Conversely, Bak and Bax may play a role in mediating PS exposure triggered by activation. Supporting the idea that there may be crosstalk between classical platelet signaling pathways and the intrinsic apoptosis pathway is recent evidence that platelet agonists can also activate caspases. Intriguingly, elements of the intrinsic pathway may also contribute to the generation of platelets by megakaryocytes. Several groups have demonstrated that megakaryocytes contain activated caspases and that their inhibition can block platelet shedding by cultured cells. Preliminary evidence we have generated suggests that Bcl-2 family proteins may be required for platelet production in vivo. Thus, it appears that there is much to be understood about the role of the intrinsic apoptosis pathway in the regulation of platelet biogenesis, function, and death.


Reproduction ◽  
2015 ◽  
Vol 149 (2) ◽  
pp. R81-R89 ◽  
Author(s):  
Karla J Hutt

BH3-only proteins are pro-apoptotic members of the BCL2 family that play pivotal roles in embryonic development, tissue homeostasis and immunity by triggering cell death through the intrinsic apoptosis pathway. Recentin vitroandin vivostudies have demonstrated that BH3-only proteins are also essential mediators of apoptosis within the ovary and are responsible for the initiation of the cell death signalling cascade in a cell type and stimulus-specific fashion. This review gives a brief overview of the intrinsic apoptosis pathway and summarise the roles of individual BH3-only proteins in the promotion of apoptosis in embryonic germ cells, oocytes, follicular granulosa cells and luteal cells. The role of these proteins in activating apoptosis in response to developmental cues and cell stressors, such as exposure to chemotherapy, radiation and environmental toxicants, is described. Studies on the function of BH3-only proteins in the ovary are providing valuable insights into the regulation of oocyte number and quality, as well as ovarian endocrine function, which collectively influence the female reproductive lifespan and health.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1231
Author(s):  
Jin Woo Kim ◽  
Eun Hee Jo ◽  
Ji Eun Moon ◽  
Hanvit Cha ◽  
Moon Han Chang ◽  
...  

Various stresses derived from both internal and external oxidative environments lead to the excessive production of reactive oxygen species (ROS) causing progressive intracellular oxidative damage and ultimately cell death. The objective of this study was to evaluate the protective effects of Citrus junos Tanaka peel extract (CE) against oxidative-stress induced the apoptosis of lung cells and the associated mechanisms of action using in vitro and in vivo models. The protective effect of CE was evaluated in vitro in NCI-H460 human lung cells exposed to pro-oxidant H2O2. The preventive effect of CE (200 mg/kg/day, 10 days) against pulmonary injuries following acrolein inhalation (10 ppm for 12 h) was investigated using an in vivo mouse model. Herein, we demonstrated the inhibitory effect of CE against the oxidative stress-induced apoptosis of lung cells under a highly oxidative environment. The function of CE is linked with its ability to suppress ROS-dependent, p53-mediated apoptotic signaling. Furthermore, we evaluated the protective role of CE against apoptotic pulmonary injuries associated with the inhalation of acrolein, a ubiquitous and highly oxidizing environmental respiratory pollutant, through the attenuation of oxidative stress. The results indicated that CE exhibits a protective effect against the oxidative stress-induced apoptosis of lung cells in both in vitro and in vivo models.


2019 ◽  
Vol 17 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Agnė Žiniauskaitė ◽  
Symantas Ragauskas ◽  
Anita K. Ghosh ◽  
Rubina Thapa ◽  
Anne E. Roessler ◽  
...  

Parasitology ◽  
2018 ◽  
Vol 146 (5) ◽  
pp. 569-579 ◽  
Author(s):  
Yuliya Y. Sokolova ◽  
Lisa C. Bowers ◽  
Xavier Alvarez ◽  
Elizabeth S. Didier

AbstractObligately intracellular microsporidia regulate their host cell life cycles, including apoptosis, but this has not been evaluated in phagocytic host cells such as macrophages that can facilitate infection but also can be activated to kill microsporidia. We examined two biologically dissimilar human-infecting microsporidia species, Encephalitozoon cuniculi and Vittaforma corneae, for their effects on staurosporine-induced apoptosis in the human macrophage-differentiated cell line, THP1. Apoptosis was measured after exposure of THP-1 cells to live and dead mature organisms via direct fluorometric measurement of Caspase 3, colorimetric and fluorometric TUNEL assays, and mRNA gene expression profiles using Apoptosis RT2 Profiler PCR Array. Both species of microsporidia modulated the intrinsic apoptosis pathway. In particular, live E. cuniculi spores inhibited staurosporine-induced apoptosis as well as suppressed pro-apoptosis genes and upregulated anti-apoptosis genes more broadly than V. corneae. Exposure to dead spores induced an opposite effect. Vittaforma corneae, however, also induced inflammasome activation via Caspases 1 and 4. Of the 84 apoptosis-related genes assayed, 42 (i.e. 23 pro-apoptosis, nine anti-apoptosis, and 10 regulatory) genes were more affected including those encoding members of the Bcl2 family, caspases and their regulators, and members of the tumour necrosis factor (TNF)/TNF receptor R superfamily.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 550-550
Author(s):  
Emma C Josefsson ◽  
Chloé James ◽  
Katya J Henley ◽  
Marlyse A Debrincat ◽  
Kelly L Rogers ◽  
...  

Abstract Abstract 550 It is widely held that megakaryocytes undergo a specialized form of apoptosis in order to shed platelets. Conversely, it is also believed that a range of insults including chemotherapeutic agents, autoantibodies and viruses, cause thrombocytopenia by inducing the apoptotic death of megakaryocytes and their progenitors. However, the apoptotic pathways that megakaryocytes possess, and the role they play in survival and platelet production are ill-defined. We recently demonstrated that platelets contain a classical intrinsic mitochondrial apoptosis pathway that regulates their life span in vivo. The key components of this pathway are the Bcl-2 family pro-survival protein Bcl-xL, and pro-death Bak and Bax. Deletion of Bak and Bax—the gatekeepers of the intrinsic pathway—blocks platelet apoptosis in response to genetic mutation or pharmacological insult, and significantly extends circulating platelet life span. To elucidate the role of the intrinsic apoptosis pathway in megakaryocytes, we generated both hematopoietic- and megakaryocyte lineage-specific deletions of Bak and Bax in mice. Surprisingly, we found that the ability of Bak−/−Bax−/− animals to produce platelets, both at steady state and under conditions of thrombopoietic stress, was unperturbed. Megakaryocyte numbers, morphology and ploidy were normal. Bak−/−Bax−/− megakaryocytes cultured in vitro showed no impairment of pro-platelet formation. Thus, classical intrinsic apoptosis is not required by megakaryocytes for the process of platelet shedding. Given that in platelets, Bak and Bax must be kept in check to maintain survival, we reasoned that the same might be true of megakaryocytes. If so, then it would be expected that one or more members of the Bcl-2 family of pro-survival proteins restrain Bak and Bax. Since Bcl-xL fulfills this role in platelets, we generated mice lacking Bcl-xL in the megakaryocyte lineage. Platelet counts in Bcl-xPf4CΔ/Pf4CΔ animals were approximately 2% of those observed in Bcl-xfl/fl littermates. Platelet life span was reduced to 5 hours, versus 5 days in controls, underscoring the requirement for Bcl-xL in mediating platelet survival. In addition, reticulated platelet analyses combined with mathematical modeling suggested that Bcl-xPf4CΔ/Pf4CΔ mice had an underlying platelet production defect. Further examination revealed that megakaryocyte numbers were significantly increased in both the bone marrow and spleen of Bcl-xPf4CΔ/Pf4CΔ animals relative to Bcl-xfl/fl controls. Megakaryocyte progenitor numbers were doubled, and serum TPO levels were dramatically reduced, indicating a megakaryocyte compartment under considerable thrombopoietic stress. In vitro cultures confirmed that Bcl-xPf4CΔ/Pf4CΔ megakaryocytes were able to develop and mature. Strikingly, however, at the point of pro-platelet formation, they underwent an abortive attempt to generate extensions and died. Death was accompanied by a dramatic increase in apoptotic effector caspase activity. This suggested that, like platelets, megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained in order to survive, and that Bcl-xL is the factor that does so during pro-platelet formation and platelet shedding. To establish whether Bak and Bax can mediate megakaryocyte death, we examined the effect on mature wild type megakaryocytes of three pharmacological agents that activate the intrinsic apoptosis pathway in other cell types: etoposide, staurosporine, and a BH3 mimetic that inhibits Bcl-xL, Bcl-2 and Bcl-w. All three triggered mitochondrial damage, caspase activation and cell death. Remarkably, genetic deletion of Bak and Bax rendered megakaryocytes resistant to etoposide and the BH3 mimetic, but not staurosporine. Our results demonstrate that megakaryocytes can undergo classical Bak- and Bax-mediated apoptotic death. They do not activate the intrinsic pathway to facilitate platelet shedding, rather, the opposite is true: they must restrain it in order to survive and generate platelets. These findings offer a potential mechanism for the death of megakaryocytes in response to insults such as cancer chemotherapy. They also suggest that additional megakaryocyte cell death pathways remain to be elucidated. Disclosures: Roberts: Abbott: Research Funding.


2021 ◽  
Author(s):  
Yong Wang ◽  
Jiawen Gao ◽  
Shasha Hu ◽  
Weiting Zeng ◽  
Hongjun Yang ◽  
...  

Abstract Background: Bladder cancer (BCa) is a commonly diagnosed malignancy worldwide that has poor survival depending on its intrinsic biologic aggressiveness and a peculiar radio- and chemoresistance features. Gaining a better understanding of tumorigenesis and developing new diagnosis and treatment strategies for BCa is important for improving BCa clinical outcome. SLC25 family member 21 (SLC25A21), a carrier transporting C5-C7 oxodicarboxylates, has been reported to contribute to oxoadipate acidemia. However, the potential role of SLC25A21 in cancer remains absolutely unknown. Methods: The expression levels of SLC25A21 in BCa and normal tissues were examined by real-time PCR and immunohistochemistry. Gain-of- and loss-of-function experiments were performed to detect the biological functions of SLC25A21 in vitro and in vivo by CCK-8 assay, plate colony formation assay, cell migration, invasion assay and experimental animal models. The subcellular distribution of substrate mediated by SLC25A21, mitochondrial membrane potential and ROS production were assessed to explore the potential mechanism of SLC25A21 in BCa.Results: We found that the expression of SLC25A21 was downregulated in BCa tissues compared to normal tissues. A significant positive correlation between decreased SLC25A21 expression and poor prognosis was observed in BCa patients. Overexpression of SLC25A21 significantly inhibited cell proliferation, migration and invasion and induced apoptosis in vitro. Moreover, the enhanced SLC25A21 expression significantly suppressed tumor growth in a xenograft mouse model. Furthermore, we revealed that SLC25A21 suppressed BCa growth by inducing the efflux of mitochondrial α-KG to the cytosol, decreasing to against oxidative stress, and activating the ROS-mediated mitochondrion-dependent apoptosis pathway. Conclusions: Our findings provide the first link between SLC25A21 expression and BCa and demonstrate that SLC25A21 acts as a crucial suppressor in BCa progression, which may help to provide new targets for BCa intervention.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Chuangyu Wen ◽  
Huihui Wang ◽  
Xiaobin Wu ◽  
Lu He ◽  
Qian Zhou ◽  
...  

Abstract Novel drugs are urgently needed for gastric cancer (GC) treatment. The thioredoxin-thioredoxin reductase (TRX-TRXR) system has been found to play a critical role in GC tumorigenesis and progression. Thus, agents that target the TRX-TRXR system may be highly efficacious as GC treatments. In this study, we showed that chaetocin, a natural product isolated from the Chaetomium species of fungi, inhibited proliferation, induced G2/M phase arrest and caspase-dependent apoptosis in both in vitro and in vivo models (cell xenografts and patient-derived xenografts) of GC. Chaetocin inactivated TRXR-1, resulting in the accumulation of reactive oxygen species (ROS) in GC cells; overexpression of TRX-1 as well as cotreatment of GC cells with the ROS scavenger N-acetyl-L-cysteine attenuated chaetocin-induced apoptosis; chaetocin-induced apoptosis was significantly increased when GC cells were cotreated with auranofin. Moreover, chaetocin was shown to inactivate the PI3K/AKT pathway by inducing ROS generation; AKT-1 overexpression also attenuated chaetocin-induced apoptosis. Taken together, these results reveal that chaetocin induces the excessive accumulation of ROS via inhibition of TRXR-1. This is followed by PI3K/AKT pathway inactivation, which ultimately inhibits proliferation and induces caspase-dependent apoptosis in GC cells. Chaetocin therefore may be a potential agent for GC treatment.


Sign in / Sign up

Export Citation Format

Share Document