Low-Frequency Signals in Long Tree-Ring Chronologies for Reconstructing Past Temperature Variability

Science ◽  
2002 ◽  
Vol 295 (5563) ◽  
pp. 2250-2253 ◽  
Author(s):  
J. Esper
2016 ◽  
Author(s):  
E. Tejedor ◽  
M. A. Saz ◽  
J. M. Cuadrat ◽  
J. Esper ◽  
M. de Luis

Abstract. Tree-rings are an important proxy to understand the natural drivers of climate variability in the Mediterranean basin and hence to improve future climate scenarios in a vulnerable region. Here, we compile 316 tree-ring width series from 11 conifer sites in the western Iberian Range. We apply a new standardization method based on the trunk basal area instead of the tree cambial age to develop a regional chronology which preserves high to low frequency variability. A new reconstruction for the 1602–2012 period correlates at −0.78 with observational September temperatures with a cumulative mean of the 21 previous months over the 1945–2012 calibration period. The new IR2Tmax reconstruction is spatially representative for the Iberian Peninsula and captures the full range of past Iberian Range temperature variability. Reconstructed long-term temperature variations match reasonably well with solar irradiance changes since warm and cold phases correspond with high and low solar activity, respectively. In addition, some annual temperatures downturns coincide with volcanic eruptions with a three year lag.


2017 ◽  
Vol 13 (2) ◽  
pp. 93-105 ◽  
Author(s):  
Ernesto Tejedor ◽  
Miguel Ángel Saz ◽  
José María Cuadrat ◽  
Jan Esper ◽  
Martín de Luis

Abstract. Tree rings are an important proxy to understand the natural drivers of climate variability in the Mediterranean Basin and hence to improve future climate scenarios in a vulnerable region. Here, we compile 316 tree-ring width series from 11 conifer sites in the western Iberian Range. We apply a new standardization method based on the trunk basal area instead of the tree cambial age to develop a regional chronology which preserves high- to low-frequency variability. A new reconstruction for the 1602–2012 period correlates at −0.78 with observational September temperatures with a cumulative mean of the 21 previous months over the 1945–2012 calibration period. The new IR2Tmax reconstruction is spatially representative for the Iberian Peninsula and captures the full range of past Iberian Range temperature variability. Reconstructed long-term temperature variations match reasonably well with solar irradiance changes since warm and cold phases correspond with high and low solar activity, respectively. In addition, some annual temperature downturns coincide with volcanic eruptions with a 3-year lag.


2016 ◽  
Vol 12 (6) ◽  
pp. 1297-1312 ◽  
Author(s):  
Peng Zhang ◽  
Hans W. Linderholm ◽  
Björn E. Gunnarson ◽  
Jesper Björklund ◽  
Deliang Chen

Abstract. Despite the emergence of new high-resolution temperature reconstructions around the world, only a few cover the Medieval Climate Anomaly (MCA). Here we present C-Scan, a new Scots pine tree-ring density-based reconstruction of warm-season (April–September) temperatures for central Scandinavia back to 850 CE, extending the previous reconstruction by 250 years. C-Scan is based on samples collected in a confined mountain region, adjusted for their differences in altitude and local environment, and standardised using the new RSFi algorithm to preserve low-frequency signals. In C-Scan, the warm peak of MCA occurs ca. 1000–1100 CE, and the Little Ice Age (LIA) between 1550 and 1900 CE. Moreover, during the last millennium the coldest decades are found around 1600 CE, and the warmest 10 and 30 years occur in the most recent century. By comparing C-Scan with other millennium-long temperature reconstructions from Fennoscandia, regional differences in multi-decadal temperature variability, especially during the warm period of the last millennium are revealed. Although these differences could be due to methodological reasons, they may indicate asynchronous warming patterns across Fennoscandia. Further investigation of these regional differences and the reasons and mechanisms behind them are needed.


2021 ◽  
Author(s):  
Vladimir Matskovsky ◽  
Fidel A. Roig ◽  
Mauricio Fuentes ◽  
Irina Korneva ◽  
Diego Araneo ◽  
...  

Abstract Proxy climate records, such as those derived from tree rings, are necessary to extend relatively short instrumental meteorological observations into the past. Tierra del Fuego is the most austral territory with forests in the world, situated close to the Antarctic Peninsula, which makes this region especially interesting for paleoclimatic research. However, high-quality, high-resolution summer temperature reconstruction are lacking in the region. In this study we used 63 tree-ring width chronologies of Nothofagus pumilio and Nothofagus betuloides and partial least squares regression (PLSR) to produce annually resolved December-to-February temperature reconstruction since AD 1600 which explains up to 65% of instrumental temperature variability. We also found that observed summer temperature variability in Tierra del Fuego is primarily driven by the fluctuations of atmospheric pressure systems both in the South Atlantic and South Pacific, while it is insignificantly correlated to major hemispheric modes: ENSO and SAM. This fact makes our reconstruction important for climate modelling experiments, as it represents specific regional variability. Our reconstruction can be used for direct comparison with model outputs to better understand model limitations or to tune a model or contribute to larger scale reconstructions based on paleoclimatic data assimilation. Moreover, we showed that PLSR has improved performance over principal component regression (PCR) in the case of multiple tree-ring predictors. According to these results, PLSR may be a preferable method over PCR for the use in automated tree-ring based reconstruction approaches, akin widely used point-by-point regression.


2016 ◽  
Vol 12 (7) ◽  
pp. 1485-1498 ◽  
Author(s):  
Liangjun Zhu ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
Binde Guo ◽  
Xiaochun Wang

Abstract. We present a reconstruction of July–August mean maximum temperature variability based on a chronology of tree-ring widths over the period AD 1646–2013 in the northern part of the northwestern Sichuan Plateau (NWSP), China. A regression model explains 37.1 % of the variance of July–August mean maximum temperature during the calibration period from 1954 to 2012. Compared with nearby temperature reconstructions and gridded land surface temperature data, our temperature reconstruction had high spatial representativeness. Seven major cold periods were identified (1708–1711, 1765–1769, 1818–1821, 1824–1828, 1832–1836, 1839–1842, and 1869–1877), and three major warm periods occurred in 1655–1668, 1719–1730, and 1858–1859 from this reconstruction. The typical Little Ice Age climate can also be well represented in our reconstruction and clearly ended with climatic amelioration at the late of the 19th century. The 17th and 19th centuries were cold with more extreme cold years, while the 18th and 20th centuries were warm with less extreme cold years. Moreover, the 20th century rapid warming was not obvious in the NWSP mean maximum temperature reconstruction, which implied that mean maximum temperature might play an important and different role in global change as unique temperature indicators. Multi-taper method (MTM) spectral analysis revealed significant periodicities of 170-, 49–114-, 25–32-, 5.7-, 4.6–4.7-, 3.0–3.1-, 2.5-, and 2.1–2.3-year quasi-cycles at a 95 % confidence level in our reconstruction. Overall, the mean maximum temperature variability in the NWSP may be associated with global land–sea atmospheric circulation (e.g., ENSO, PDO, or AMO) as well as solar and volcanic forcing.


Author(s):  
Keith R Briffa ◽  
Philip D Jones ◽  
Fritz H Schweingruber ◽  
Wibjörn Karlén ◽  
Stepan G Shiyatov

2001 ◽  
Vol 28 (3) ◽  
pp. 543-546 ◽  
Author(s):  
Rosanne D'Arrigo ◽  
Gordon Jacoby ◽  
David Frank ◽  
Neil Pederson ◽  
Edward Cook ◽  
...  

2015 ◽  
Vol 35 ◽  
pp. 80-86 ◽  
Author(s):  
Kathelyn Paredes-Villanueva ◽  
Lidio López ◽  
Matthew Brookhouse ◽  
Rafael María Navarro Cerrillo

Sign in / Sign up

Export Citation Format

Share Document