t-SNARE Activation Through Transient Interaction with a Rab-Like Guanosine Triphosphatase

Science ◽  
1997 ◽  
Vol 276 (5316) ◽  
pp. 1255-1258 ◽  
Author(s):  
V. V. Lupashin
1988 ◽  
Vol 263 (33) ◽  
pp. 17584-17589
Author(s):  
Y Kanaho ◽  
P P Chang ◽  
J Moss ◽  
M Vaughan

2007 ◽  
Vol 176 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Adam C. Smith ◽  
Won Do Heo ◽  
Virginie Braun ◽  
Xiuju Jiang ◽  
Chloe Macrae ◽  
...  

Members of the Rab guanosine triphosphatase (GTPase) family are key regulators of membrane traffic. Here we examined the association of 48 Rabs with model phagosomes containing a non-invasive mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium). This mutant traffics to lysosomes and allowed us to determine which Rabs localize to a maturing phagosome. In total, 18 Rabs associated with maturing phagosomes, each with its own kinetics of association. Dominant-negative mutants of Rab23 and 35 inhibited phagosome–lysosome fusion. A large number of Rab GTPases localized to wild-type Salmonella-containing vacuoles (SCVs), which do not fuse with lysosomes. However, some Rabs (8B, 13, 23, 32, and 35) were excluded from wild-type SCVs whereas others (5A, 5B, 5C, 7A, 11A, and 11B) were enriched on this compartment. Our studies demonstrate that a complex network of Rab GTPases controls endocytic progression to lysosomes and that this is modulated by S. Typhimurium to allow its intracellular growth.


2014 ◽  
Vol 206 (6) ◽  
pp. 751-762 ◽  
Author(s):  
Kota Saito ◽  
Koh Yamashiro ◽  
Noriko Shimazu ◽  
Tomoya Tanabe ◽  
Kenji Kontani ◽  
...  

Mechanisms for exporting variably sized cargo from the endoplasmic reticulum (ER) using the same machinery remain poorly understood. COPII-coated vesicles, which transport secretory proteins from the ER to the Golgi apparatus, are typically 60–90 nm in diameter. However, collagen, which forms a trimeric structure that is too large to be accommodated by conventional transport vesicles, is also known to be secreted via a COPII-dependent process. In this paper, we show that Sec12, a guanine-nucleotide exchange factor for Sar1 guanosine triphosphatase, is concentrated at ER exit sites and that this concentration of Sec12 is specifically required for the secretion of collagen VII but not other proteins. Furthermore, Sec12 recruitment to ER exit sites is organized by its direct interaction with cTAGE5, a previously characterized collagen cargo receptor component, which functions together with TANGO1 at ER exit sites. These findings suggest that the export of large cargo requires high levels of guanosine triphosphate–bound Sar1 generated by Sec12 localized at ER exit sites.


2013 ◽  
Vol 203 (5) ◽  
pp. 801-814 ◽  
Author(s):  
Songyu Wang ◽  
Fabian B. Romano ◽  
Christine M. Field ◽  
Tim J. Mitchison ◽  
Tom A. Rapoport

In metazoans the endoplasmic reticulum (ER) changes during the cell cycle, with the nuclear envelope (NE) disassembling and reassembling during mitosis and the peripheral ER undergoing extensive remodeling. Here we address how ER morphology is generated during the cell cycle using crude and fractionated Xenopus laevis egg extracts. We show that in interphase the ER is concentrated at the microtubule (MT)-organizing center by dynein and is spread by outward extension of ER tubules through their association with plus ends of growing MTs. Fusion of membranes into an ER network is dependent on the guanosine triphosphatase atlastin (ATL). NE assembly requires fusion by both ATL and ER-soluble N-ethyl-maleimide–sensitive factor adaptor protein receptors. In mitotic extracts, the ER converts into a network of sheets connected by ER tubules and loses most of its interactions with MTs. Together, these results indicate that fusion of ER membranes by ATL and interaction of ER with growing MT ends and dynein cooperate to generate distinct ER morphologies during the cell cycle.


2008 ◽  
Vol 19 (6) ◽  
pp. 2500-2508 ◽  
Author(s):  
Vincent J. Starai ◽  
Christopher M. Hickey ◽  
William Wickner

The fusion of yeast vacuoles, like other organelles, requires a Rab-family guanosine triphosphatase (Ypt7p), a Rab effector and Sec1/Munc18 (SM) complex termed HOPS (homotypic fusion and vacuole protein sorting), and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The central 0-layer of the four bundled vacuolar SNAREs requires the wild-type three glutaminyl (Q) and one arginyl (R) residues for optimal fusion. Alterations of this layer dramatically increase the Km value for SNAREs to assemble trans-SNARE complexes and to fuse. We now find that added purified HOPS complex strongly suppresses the fusion of vacuoles bearing 0-layer alterations, but it has little effect on the fusion of vacuoles with wild-type SNAREs. HOPS proofreads at two levels, inhibiting the formation of trans-SNARE complexes with altered 0-layers and suppressing the ability of these mismatched 0-layer trans-SNARE complexes to support membrane fusion. HOPS proofreading also extends to other parts of the SNARE complex, because it suppresses the fusion of trans-SNARE complexes formed without the N-terminal Phox homology domain of Vam7p (Qc). Unlike some other SM proteins, HOPS proofreading does not require the Vam3p (Qa) N-terminal domain. HOPS thus proofreads SNARE domain and N-terminal domain structures and regulates the fusion capacity of trans-SNARE complexes, only allowing full function for wild-type SNARE configurations. This is the most direct evidence to date that HOPS is directly involved in the fusion event.


2017 ◽  
Vol 1 (2) ◽  
pp. 140-152 ◽  
Author(s):  
Ryan J. Schulze ◽  
Karuna Rasineni ◽  
Shaun G. Weller ◽  
Micah B. Schott ◽  
Barbara Schroeder ◽  
...  

2021 ◽  
Vol 7 (21) ◽  
pp. eabg0942
Author(s):  
Jae Ho Lee ◽  
Ahmad Jomaa ◽  
SangYoon Chung ◽  
Yu-Hsien Hwang Fu ◽  
Ruilin Qian ◽  
...  

The conserved signal recognition particle (SRP) cotranslationally delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum (ER). The molecular mechanism by which eukaryotic SRP transitions from cargo recognition in the cytosol to protein translocation at the ER is not understood. Here, structural, biochemical, and single-molecule studies show that this transition requires multiple sequential conformational rearrangements in the targeting complex initiated by guanosine triphosphatase (GTPase)–driven compaction of the SRP receptor (SR). Disruption of these rearrangements, particularly in mutant SRP54G226E linked to severe congenital neutropenia, uncouples the SRP/SR GTPase cycle from protein translocation. Structures of targeting intermediates reveal the molecular basis of early SRP-SR recognition and emphasize the role of eukaryote-specific elements in regulating targeting. Our results provide a molecular model for the structural and functional transitions of SRP throughout the targeting cycle and show that these transitions provide important points for biological regulation that can be perturbed in genetic diseases.


2021 ◽  
Author(s):  
Kevin Rhine ◽  
Morgan Dasovich ◽  
Joseph Yoniles ◽  
Mohsen Badiee ◽  
Sophie Skanchy ◽  
...  

1986 ◽  
Vol 233 (3) ◽  
pp. 839-844 ◽  
Author(s):  
P P J Dunn ◽  
A R Slabas ◽  
A L Moore

The catalytic properties of cuckoo-pint (Arum maculatum) mitochondrial adenosine triphosphatase have been analysed. The pH profile, effect of inhibitors, cold-stability and substrate specificity are characteristic of mitochondrial adenosine triphosphatases, although a high guanosine triphosphatase activity does appear to be restricted to plant mitochondrial adenosine triphosphatases. The kinetic properties of nucleoside 5′-triphosphate hydrolysis by membrane-bound and soluble enzymes have been studied by means of double-reciprocal plots. These plots were linear in the absence of an activating anion, which may indicate that the catalytic and/or regulatory mechanism of Arum maculatum adenosine triphosphatase is different from that of other enzyme preparations. It is suggested that the differences in subunit composition of plant and mammalian adenosine triphosphatases reported previously [Dunn, Slabas & Moore (1985) Biochem. J. 225, 821-824] are structurally, rather than functionally, significant.


Sign in / Sign up

Export Citation Format

Share Document