scholarly journals East Asian hydroclimate modulated by the position of the westerlies during Termination I

Science ◽  
2018 ◽  
Vol 362 (6414) ◽  
pp. 580-583 ◽  
Author(s):  
Hongbin Zhang ◽  
Michael L. Griffiths ◽  
John C. H. Chiang ◽  
Wenwen Kong ◽  
Shitou Wu ◽  
...  

Speleothem oxygen isotope records have revolutionized our understanding of the paleo East Asian monsoon, yet there is fundamental disagreement on what they represent in terms of the hydroclimate changes. We report a multiproxy speleothem record of monsoon evolution during the last deglaciation from the middle Yangtze region, which indicates a wetter central eastern China during North Atlantic cooling episodes, despite the oxygen isotopic record suggesting a weaker monsoon. We show that this apparent contradiction can be resolved if the changes are interpreted as a lengthening of the Meiyu rains and shortened post-Meiyu stage, in accordance with a recent hypothesis. Model simulations support this interpretation and further reveal the role of the westerlies in communicating the North Atlantic influence to the East Asian climate.

1996 ◽  
Vol 12 (10) ◽  
pp. 701-709 ◽  
Author(s):  
Z. Guo ◽  
T. Liu ◽  
J. Guiot ◽  
N. Wu ◽  
H. Lü ◽  
...  

2020 ◽  
Vol 33 (17) ◽  
pp. 7455-7478
Author(s):  
Nanxuan Jiang ◽  
Qing Yan ◽  
Zhiqing Xu ◽  
Jian Shi ◽  
Ran Zhang

AbstractTo advance our knowledge of the response of midlatitude westerlies to various external forcings, we investigate the meridional shift of midlatitude westerlies over arid central Asia (ACA) during the past 21 000 years, which experienced more varied forcings than the present day based on a set of transient simulations. Our results suggest that the evolution of midlatitude westerlies over ACA and driving factors vary with time and across seasons. In spring, the location of midlatitude westerlies over ACA oscillates largely during the last deglaciation, driven by meltwater fluxes and continental ice sheets, and then shows a long-term equatorward shift during the Holocene controlled by orbital insolation. In summer, orbital insolation dominates the meridional shift of midlatitude westerlies, with poleward and equatorward migration during the last deglaciation and the Holocene, respectively. From a thermodynamic perspective, variations in zonal winds are linked with the meridional temperature gradient based on the thermal wind relationship. From a dynamic perspective, variations in midlatitude westerlies are mainly induced by anomalous sea surface temperatures over the Indian Ocean through the Matsuno–Gill response and over the North Atlantic Ocean by the propagation of Rossby waves, or both, but their relative importance varies across forcings. Additionally, the modeled meridional shift of midlatitude westerlies is broadly consistent with geological evidence, although model–data discrepancies still exist. Overall, our study provides a possible scenario for a meridional shift of midlatitude westerlies over ACA in response to various external forcings during the past 21 000 years and highlights important roles of both the Indian Ocean and the North Atlantic Ocean in regulating Asian westerlies, which may shed light on the behavior of westerlies in the future.


2018 ◽  
Vol 31 (14) ◽  
pp. 5485-5506 ◽  
Author(s):  
Zhiqi Zhang ◽  
Xuguang Sun ◽  
Xiu-Qun Yang

Abstract East Asian summer monsoon precipitation (EASMP) features complicated interdecadal variability with multiple time periods and spatial patterns. Using century-long datasets of HadISST, CRU precipitation, and the ECMWF twentieth-century reanalysis (ERA-20C), this study examines the joint influence of three oceanic interdecadal signals [i.e., Pacific decadal oscillation (PDO), Atlantic multidecadal oscillation (AMO), and Indian Ocean Basin mode (IOBM)] on the EASMP, which, however, is found not to be simply a linear combination of their individual effects. When PDO and AMO are out of phase, the same-sign SST anomalies occur in the North Pacific and North Atlantic, and a zonally orientated teleconnection wave train appears across the Eurasian mid-to-high latitudes, propagating from the North Atlantic to northern East Asia along the Asian westerly jet waveguide. Correspondingly, the interdecadal precipitation anomalies are characterized by a meridional tripole mode over eastern China. When PDO and AMO are in phase, with opposite sign SST anomalies in the North Pacific and North Atlantic, the sandwich pattern of anomalous stationary Rossby wavenumber tends to reduce the effect of the waveguide in the eastern Mediterranean region, and the teleconnection wave train from the North Atlantic travels only to western central Asia along a great circle route, causing Indian summer monsoon precipitation (ISMP) anomalies. The ISMP anomalies, in turn, interact with the teleconnection wave train induced by the PDO and AMO, leading to a meridional dipole mode of interdecadal precipitation anomalies over eastern China. Through the impact on the ISMP, the IOBM exerts significantly linear modulation on the combined impacts of PDO and AMO, especially over northern East Asia.


Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 90
Author(s):  
Yongxiao Liang ◽  
Pengfeng Xiao

The effects of urbanization over eastern China on the East Asian summer monsoon (EASM) under different sea surface temperature background are compared using a Community Atmosphere Model (CAM5.1). Experiments of urbanization investigated by comparing two climate simulations with and without urban land cover under both positive and negative phases of Pacific Decadal Oscillation (PDO) show the spatial distribution of precipitation with ‘southern flood and northern drought’ and weakening status of EASM. The climate effect of urbanization in eastern China is significantly different from north to south. Anomalous vertical ascending motion due to the role of urbanization in the south of 30° N have induced an increase in convective available potential energy (CAPE) and precipitation increase over southern China. At the same time, the downward vertical motion occurs in the north of 30° N which cause warming over northern China. Due to the anti-cyclonic anomalies in the upper and lower layers of the north, the monsoon circulation is weakened which can reduce the precipitation. However, urbanization impact under various phases of PDO show different effect. In the 1956–1970 urbanization experiments of negative PDO phase, the downward vertical motion and anti-cyclonic anomalies in the north of 30° N are also weaker than that of positive phase of PDO in 1982–1996. In terms of this situation, the urbanization experiments of negative phase of PDO reveal that the range of the warming area over the north of 40° N is small, and the warming intensity is weak, but the precipitation change is more obvious compared with the background of positive phase of PDO.


2020 ◽  
Vol 16 (1) ◽  
pp. 315-324 ◽  
Author(s):  
Xingxing Liu ◽  
Youbin Sun ◽  
Jef Vandenberghe ◽  
Peng Cheng ◽  
Xu Zhang ◽  
...  

Abstract. Rapid monsoon changes since the last deglaciation remain poorly constrained due to the scarcity of geological archives. Here we present a high-resolution scanning X-ray fluorescence (XRF) analysis of a 13.5 m terrace succession on the western Chinese Loess Plateau (CLP) to infer rapid monsoon changes since the last deglaciation. Our results indicate that Rb∕Sr and Zr∕Rb are sensitive indicators of chemical weathering and wind sorting, respectively, which are further linked to the strength of the East Asian summer monsoon (EASM) and the East Asian winter monsoon (EAWM). During the last deglaciation, two cold intervals of the Heinrich event 1 and Younger Dryas were characterized by intensified winter monsoon and weakened summer monsoon. The EAWM gradually weakened at the beginning of the Holocene, while the EASM remained steady till 9.9 ka and then grew stronger. Both the EASM and EAWM intensities were relatively weak during the Middle Holocene, indicating a mid-Holocene climatic optimum. Rb∕Sr and Zr∕Rb exhibit an antiphase relationship between the summer and winter monsoon changes on a centennial timescale during 16–1 ka. Comparison of these monsoon changes with solar activity and North Atlantic cooling events reveals that both factors can lead to abrupt changes on a centennial timescale in the Early Holocene. During the Late Holocene, North Atlantic cooling became the major forcing of centennial monsoon events.


Sign in / Sign up

Export Citation Format

Share Document