Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau

Science ◽  
2020 ◽  
Vol 370 (6516) ◽  
pp. 584-587
Author(s):  
Dongju Zhang ◽  
Huan Xia ◽  
Fahu Chen ◽  
Bo Li ◽  
Viviane Slon ◽  
...  

A late Middle Pleistocene mandible from Baishiya Karst Cave (BKC) on the Tibetan Plateau has been inferred to be from a Denisovan, an Asian hominin related to Neanderthals, on the basis of an amino acid substitution in its collagen. Here we describe the stratigraphy, chronology, and mitochondrial DNA extracted from the sediments in BKC. We recover Denisovan mitochondrial DNA from sediments deposited ~100 thousand and ~60 thousand years ago (ka) and possibly as recently as ~45 ka. The long-term occupation of BKC by Denisovans suggests that they may have adapted to life at high altitudes and may have contributed such adaptations to modern humans on the Tibetan Plateau.

Author(s):  
Fahu Chen ◽  
Frido Welker ◽  
Chuan-Chou Shen ◽  
Shara E. Bailey ◽  
Inga Bergmann ◽  
...  

Nature ◽  
2019 ◽  
Vol 569 (7756) ◽  
pp. 409-412 ◽  
Author(s):  
Fahu Chen ◽  
Frido Welker ◽  
Chuan-Chou Shen ◽  
Shara E. Bailey ◽  
Inga Bergmann ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 505
Author(s):  
Yonglan Tang ◽  
Guirong Xu ◽  
Rong Wan ◽  
Xiaofang Wang ◽  
Junchao Wang ◽  
...  

It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at representative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed is small in the morning, large at noon and largest at night, presenting a similar diurnal cycle to that of convective activity over the TP, which is conductive to nighttime precipitation. Additionally, the inverse layer is accompanied by the inverse humidity layer, and wind speed presents multi-peaks distribution in its vertical structure. Both of these are closely related with the underlying surface and topography of Jiulong. More studies on physical mechanism and numerical simulation are necessary for better understanding the atmospheric phenomenon over the TP.


2020 ◽  
Author(s):  
Hongru Yan ◽  
Jianping Huang ◽  
Yongli He ◽  
Yuzhi Liu ◽  
Tianhe Wang ◽  
...  

2020 ◽  
Author(s):  
Mark Allen ◽  
Robert Law

<p><strong>Evolution of the Tibetan Plateau is important for understanding continental tectonics because of its exceptional elevation (~5 km above sea level) and crustal thickness (~70 km). Patterns of long-term landscape evolution can constrain tectonic processes, but have been hard to quantify, in contrast to established datasets for strain, exhumation and paleo-elevation. This study analyses the relief of the bases and tops of 17 Cenozoic lava fields on the central and northern Tibetan Plateau. Analyzed fields have typical lateral dimensions of 10s of km, and so have an appropriate scale for interpreting tectonic geomorphology. Fourteen of the fields have not been deformed since eruption. One field is cut by normal faults; two others are gently folded with limb dips <6<sup>o</sup></strong><strong>. </strong><strong>Relief of the bases and tops of the fields is comparable to modern, internally-drained, parts of the plateau, and distinctly lower than externally-drained regions. The lavas preserve a record of underlying low relief bedrock landscapes at the time they were erupted, which have undergone little change since. There is an overlap in each area between younger published low-temperature thermochronology ages and the oldest eruption in each area, here interpreted as the transition </strong><strong>between the end of significant (>3 km) exhumation and plateau landscape development. </strong><strong>This diachronous process took place between ~32.5<sup>o</sup> - ~36.5<sup>o</sup> N between ~40 and ~10 Ma, advancing northwards at a long-term rate of ~15 km/Myr. Results are consistent with incremental northwards growth of the plateau, rather than a stepwise evolution or synchronous uplift.</strong></p>


2016 ◽  
Vol 8 (2) ◽  
pp. 466-477 ◽  
Author(s):  
Hang Yin ◽  
Chunxiang Cao ◽  
Min Xu ◽  
Wei Chen ◽  
Xiliang Ni ◽  
...  

2009 ◽  
Vol 13 (11) ◽  
pp. 2023-2030 ◽  
Author(s):  
M. Li ◽  
Y. Ma ◽  
Z. Hu ◽  
H. Ishikawa ◽  
Y. Oku

Abstract. The mesoscale snow distribution over the Namco lake area of the Tibetan Plateau on October 2005 has been investigated in this paper. The base and revised experiments were conducted using the Weather Research Model (WRF) with three nested grids that included a 1 km finest grid centered on the Namco station. Our simulation ran from 6 October through to 10 October 2005, which was concurrent with long term meteorological observations. Evaluation against boundary layer meteorological tower measurements and flux observations showed that the model captured the observed 2 m temperature and 10 m winds reasonably well in the revised experiment. The results suggest that output snow depth maximum amounts from two simulated experiments were centered downwind of the Namco lakeshore. Modified surface state variable, for example, surface skin temperature on the lake help to increase simulated credibility.


2020 ◽  
Vol 287 (1923) ◽  
pp. 20192968 ◽  
Author(s):  
Manyu Ding ◽  
Tianyi Wang ◽  
Albert Min-Shan Ko ◽  
Honghai Chen ◽  
Hui Wang ◽  
...  

The clarification of the genetic origins of present-day Tibetans requires an understanding of their past relationships with the ancient populations of the Tibetan Plateau. Here we successfully sequenced 67 complete mitochondrial DNA genomes of 5200 to 300-year-old humans from the plateau. Apart from identifying two ancient plateau lineages (haplogroups D4j1b and M9a1a1c1b1a) that suggest some ancestors of Tibetans came from low-altitude areas 4750 to 2775 years ago and that some were involved in an expansion of people moving between high-altitude areas 2125 to 1100 years ago, we found limited evidence of recent matrilineal continuity on the plateau. Furthermore, deep learning of the ancient data incorporated into simulation models with an accuracy of 97% supports that present-day Tibetan matrilineal ancestry received partial contribution rather than complete continuity from the plateau populations of the last 5200 years.


Sign in / Sign up

Export Citation Format

Share Document