Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice

2020 ◽  
Vol 12 (567) ◽  
pp. eaay6218 ◽  
Author(s):  
Shahanshah Khan ◽  
Sumyya Waliullah ◽  
Victoria Godfrey ◽  
Md Abdul Wadud Khan ◽  
Rajalaksmy A. Ramachandran ◽  
...  

The higher prevalence of inflammatory bowel disease (IBD) in Western countries points to Western diet as a possible IBD risk factor. High sugar, which is linked to many noncommunicable diseases, is a hallmark of the Western diet, but its role in IBD remains unknown. Here, we studied the effects of simple sugars such as glucose and fructose on colitis pathogenesis in wild-type and Il10−/− mice. Wild-type mice fed 10% glucose in drinking water or high-glucose diet developed severe colitis induced by dextran sulfate sodium. High-glucose–fed Il10−/− mice also developed a worsened colitis compared to glucose-untreated Il10−/− mice. Short-term intake of high glucose or fructose did not trigger inflammatory responses in healthy gut but markedly altered gut microbiota composition. In particular, the abundance of the mucus-degrading bacteria Akkermansia muciniphila and Bacteroides fragilis was increased. Consistently, bacteria-derived mucolytic enzymes were enriched leading to erosion of the colonic mucus layer of sugar-fed wild-type and Il10−/− mice. Sugar-induced exacerbation of colitis was not observed when mice were treated with antibiotics or maintained in a germ-free environment, suggesting that altered microbiota played a critical role in sugar-induced colitis pathogenesis. Furthermore, germ-free mice colonized with microbiota from sugar-treated mice showed increased colitis susceptibility. Together, these data suggest that intake of simple sugars predisposes to colitis and enhances its pathogenesis via modulation of gut microbiota in mice.

2021 ◽  
Author(s):  
Jielong Guo ◽  
Xue Han ◽  
Yilin You ◽  
Weidong Huang ◽  
Zhan Jicheng

Abstract BackgroundLow-dose antibiotic contamination in animal food is still a severe food safety problem worldwide. Penicillin is one of the main classes of antibiotics being detected in food. Previous studies have shown that transient exposure of low-dose penicillin (LDP) during early life resulted in metabolic syndrome (MetS) in mice. However, the underlying mechanism(s) and efficient approaches to counteracting this are largely unknown.MethodsWild-type (WT) or secretory IgA (SIgA)-deficient (Pigr-/-) C57BL/6 mice were exposed to LDP or not from several days before birth to 30 d of age. Five times of FMT or probiotics (a mixture of Lactobacillus bulgaricus and L. rhamnosus GG) treatments were applied to parts of these LDP-treated mice from 12 d to 28 d of life. Bacterial composition from different regions (mucosa and lumen) of the colon and ileum were analyzed through 16S rDNA sequencing. Intestinal IgA response was analyzed. Multiple parameters related to MetS were also determined. In addition, germ-free animals and in vitro tissue culture were also used to determine the correlations between LDP, gut microbiota (GM) and intestinal IgA response.ResultsLDP disturbed the intestinal bacterial composition, especially for ileal mucosa, the main inductive and effective sites of IgA response, in 30-d-old mice. The alteration of early GM resulted in a persistent inhibition of the intestinal IgA response, leading to a constant reduction of fecal and caecal SIgA levels throughout the 25-week experiment, which is early life-dependent, as transfer of LDP-GM to 30 d germ-free mice only resulted in a transient reduction in fecal SIgA. LDP-induced reduction in SIgA led to a decrease in IgA+ bacteria and a dysbiosis in the ileal mucosal samples of 25 week wild-type but not Pigr-/- mice. Moreover, LDP also resulted in increases in ileal bacterial encroachment and adipose inflammation, along with an enhancement of diet-induced MetS in an intestinal SIgA-dependent manner. Furthermore, several times of FMT or probiotic treatments during LDP treatment are efficient to fully (for FMT) or partially (for probiotics) counteract the LDP-effect on both GM and metabolism.ConclusionsEarly-life LDP-induced enhancement of diet-induced MetS is mediated by intestinal SIgA, which could be (partially) restored by FMT or probiotics treatment.


2000 ◽  
Vol 278 (4) ◽  
pp. L631-L639 ◽  
Author(s):  
Kevin S. Harrod ◽  
Amber D. Mounday ◽  
Jeffrey A. Whitsett

The adenoviral E3-14.7K protein is a cytoplasmic protein synthesized after adenoviral infection. To assess the contribution of E3-14.7K-sensitive pathways in the modulation of inflammation by the respiratory epithelium, inflammatory responses to intratracheal lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α were assessed in transgenic mice bearing the adenoviral E3-14.7K gene under the direction of the surfactant protein (SP) C promoter. When E3-14.7K transgenic mice were administered LPS intratracheally, lung inflammation as indicated by macrophage and neutrophil accumulation in bronchoalveolar lavage fluid was decreased compared with wild-type control mice. Lung inflammation and epithelial cell injury were decreased in E3-14.7K mice 24 and 48 h after LPS administration. Intracellular staining for surfactant proprotein (proSP) B, proSP-C, and SP-B was decreased and extracellular staining was markedly increased in wild-type mice after LPS administration, consistent with LPS-induced lung injury. In contrast, intense intracellular staining of proSP-B, proSP-C, and SP-B persisted in type II cells of E3-14.7K mice, whereas extracellular staining of proSP-B and proSP-C was absent. Inhibitory effects of intratracheal LPS on SP-C mRNA were ameliorated by expression of the E3-14.7Kgene. Similar to the response to LPS, lung inflammation after intratracheal administration of TNF-α was decreased in E3-14.7K transgenic mice. Levels of TNF-α after LPS administration were similar in wild-type and E3-14.7K-bearing mice. Cell-selective expression of E3-14.7K in the respiratory epithelium inhibited LPS- and TNF-α-mediated lung inflammation, demonstrating the critical role of respiratory epithelial cells in LPS- and TNF-α-induced lung inflammation.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
T. Harach ◽  
N. Marungruang ◽  
N. Duthilleul ◽  
V. Cheatham ◽  
K. D. Mc Coy ◽  
...  

Abstract Alzheimer’s disease is the most common form of dementia in the western world, however there is no cure available for this devastating neurodegenerative disorder. Despite clinical and experimental evidence implicating the intestinal microbiota in a number of brain disorders, its impact on Alzheimer’s disease is not known. To this end we sequenced bacterial 16S rRNA from fecal samples of Aβ precursor protein (APP) transgenic mouse model and found a remarkable shift in the gut microbiota as compared to non-transgenic wild-type mice. Subsequently we generated germ-free APP transgenic mice and found a drastic reduction of cerebral Aβ amyloid pathology when compared to control mice with intestinal microbiota. Importantly, colonization of germ-free APP transgenic mice with microbiota from conventionally-raised APP transgenic mice increased cerebral Aβ pathology, while colonization with microbiota from wild-type mice was less effective in increasing cerebral Aβ levels. Our results indicate a microbial involvement in the development of Abeta amyloid pathology, and suggest that microbiota may contribute to the development of neurodegenerative diseases.


2018 ◽  
Vol 315 (3) ◽  
pp. E340-E356 ◽  
Author(s):  
Li-Hao Huang ◽  
Elaina M. Melton ◽  
Haibo Li ◽  
Paul Sohn ◽  
DaeYoung Jung ◽  
...  

Macrophages are phagocytes that play important roles in health and diseases. Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) converts cellular cholesterol to cholesteryl esters and is expressed in many cell types. Unlike global Acat1 knockout (KO), myeloid-specific Acat1 KO ( Acat1−) does not cause overt abnormalities in mice. Here, we performed analyses in age- and sex-matched Acat1− M/− M and wild-type mice on chow or Western diet and discovered that Acat1− M/− M mice exhibit resistance to Western diet-induced obesity. On both chow and Western diets, Acat1− M/− M mice display decreased adipocyte size and increased insulin sensitivity. When fed with Western diet, Acat1− M/− M mice contain fewer infiltrating macrophages in white adipose tissue (WAT), with significantly diminished inflammatory phenotype. Without Acat1, the Ly6Chi monocytes express reduced levels of integrin-β1, which plays a key role in the interaction between monocytes and the inflamed endothelium. Adoptive transfer experiment showed that the appearance of leukocytes from Acat1− M/− M mice to the inflamed WAT of wild-type mice is significantly diminished. Under Western diet, Acat1− M/− M causes suppression of multiple proinflammatory genes in WAT. Cell culture experiments show that in RAW 264.7 macrophages, inhibiting ACAT1 with a small-molecule ACAT1-specific inhibitor reduces inflammatory responses to lipopolysaccharide. We conclude that under Western diet, blocking ACAT1 in macrophages attenuates inflammation in WAT. Other results show that Acat1− M/− M does not compromise antiviral immune response. Our work reveals that blocking ACAT1 suppresses diet-induced obesity in part by slowing down monocyte infiltration to WAT as well as by reducing the inflammatory responses of adipose tissue macrophages.


2021 ◽  
Author(s):  
Mathis Wolter ◽  
Alex Steimle ◽  
Jacques Zimmer ◽  
Mahesh S Desai

Food safety has considerably improved worldwide, yet infections with food-borne human enteric pathogens, such as Listeria spp. and Salmonella spp., still cause numerous hospitalizations and fatalities. Thus, the need to shed more light on the mechanisms of enteropathogenesis is apparent. Since dietary alterations, including fiber deficiency, might impact the colonization resistance by the gut microbiota, studying diet-microbiota-pathogen axis holds promise in further understanding the pathogenesis mechanisms. Using a gnotobiotic mouse model containing a 14-member synthetic human gut microbiota (14SM), we have previously shown that dietary fiber deprivation promotes proliferation of mucin-degrading bacteria leading to a microbiota-mediated erosion of the colonic mucus barrier, which results in an increased susceptibility towards the rodent enteric pathogen Citrobacter rodentium. Here, we sought to understand how low-fiber diet affects susceptibility to Listeria monocytogenes and Salmonella typhimurium infections in our 14SM gnotobiotic mouse model, in BALB/c and C57BL/6N backgrounds, respectively. Intriguingly and in contrast to our results with C. rodentium, we observe that depriving mice of dietary fiber protected them from infections with the pathogens compared to mice fed a standard chow. The microbiota delayed the overall pathogenicity as compared to the onset of disease observed in germ-free control mice; nevertheless, we observe the same effect of diet in germ-free mice, suggesting that the susceptibility is microbiota independent. Our study points out an important observation that dietary fiber plays a crucial role on either the host susceptibility, the virulence of these pathogens, or both, which would be judicious to design and interpret future studies.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S39-S40
Author(s):  
Victoria Godfrey ◽  
Hasan Zaki

Abstract The incidence of inflammatory bowel disease (IBD) is strikingly high in Western countries, implicating the role of Western diet in its etiology and pathogenesis. Western diet is characterized by high fat, low fiber, and high sugar. Despite clinical evidence of an association between high sugar diet and IBD susceptibility, the precise role of dietary simple sugars such as glucose, fructose, and sucrose in colitis pathogenesis is unknown. Using dextran sodium sulfate (DSS) and IL10-deficient mouse models of colitis, we studied the effect of simple sugars in colitis susceptibility. Mice were given high glucose, fructose or sucrose in their drinking water or left untreated before and during colitis induced by DSS. Sugar-fed mice exhibited increased colitis susceptibility evidenced by higher body weight loss, diarrhea, rectal bleeding, and severe histopathological changes in the colon as compared to those of sugar-untreated colitic mice. Pre-colitis dietary habit of sugar consumption was critical since sugar pretreated mice were susceptible to DSS-induced colitis even without high sugar diet intake during DSS administration. Consistent with these findings, there were higher incidence of spontaneous colitis development in Il10-/- mice following consumption of high sugar. To understand the underlying mechanism, we evaluated the effect of high sugar diet on intestinal epithelial cell death, inflammation, epithelial barrier permeability, and gut microbiota composition in healthy mice. We did not observe any major pathological changes and apoptosis in the colon of sugar-fed mice. Inflammatory responses, activation of inflammatory signaling pathways, and the expression of tight junction proteins were comparable between control and sugar-fed mice. Interestingly, gut microbiota composition of sugar-fed mice was altered as measured by 16S rRNA gene sequencing of DNA isolated from feces. Microbial species richness was reduced and relative abundance of several bacterial species was either increased or decreased in sugar-fed mice. We further confirmed that sugar-induced alteration of gut microbiota is responsible for exacerbated colitis by using antibiotics or germ-free mice. Mice receiving antibiotics during high-sugar intake did not show increased DSS-colitis susceptibility. Similarly, high-sugar diet did not induce overt colitis pathogenesis in germ-free mice. These findings demonstrate a critical role of dietary caloric sugars in the predisposition and promotion of colitis and could be implicated in the treatment and management of IBD.


2018 ◽  
Vol 10 (464) ◽  
pp. eaam7019 ◽  
Author(s):  
Eric J. Battaglioli ◽  
Vanessa L. Hale ◽  
Jun Chen ◽  
Patricio Jeraldo ◽  
Coral Ruiz-Mojica ◽  
...  

The gut microbiota plays a critical role in pathogen defense. Studies using antibiotic-treated mice reveal mechanisms that increase susceptibility toClostridioides difficileinfection (CDI), but risk factors associated with CDI in humans extend beyond antibiotic use. Here, we studied the dysbiotic gut microbiota of a subset of patients with diarrhea and modeled the gut microbiota of these patients by fecal transplantation into germ-free mice. When challenged withC. difficile, the germ-free mice transplanted with fecal samples from patients with dysbiotic microbial communities showed increased gut amino acid concentrations and greater susceptibility to CDI. AC. difficilemutant that was unable to use proline as an energy source was unable to robustly infect germ-free mice transplanted with a dysbiotic or healthy human gut microbiota. Prophylactic dietary intervention using a low-proline or low-protein diet in germ-free mice colonized by a dysbiotic human gut microbiota resulted in decreased expansion of wild-typeC. difficileafter challenge, suggesting that amino acid availability might be important for CDI. Furthermore, a prophylactic fecal microbiota transplant in mice with dysbiosis reduced proline availability and protected the mice from CDI. Last, we identified clinical risk factors that could potentially predict gut microbial dysbiosis and thus greater susceptibility to CDI in a retrospective cohort of patients with diarrhea. Identifying at-risk individuals and reducing their susceptibility to CDI through gut microbiota–targeted therapies could be a new approach to preventingC. difficileinfection in susceptible patients.


2021 ◽  
Vol 22 (9) ◽  
pp. 5005
Author(s):  
Ibrahim Yusufu ◽  
Kehong Ding ◽  
Kathryn Smith ◽  
Umesh D. Wankhade ◽  
Bikash Sahay ◽  
...  

The gut microflora is a vital component of the gastrointestinal (GI) system that regulates local and systemic immunity, inflammatory response, the digestive system, and overall health. Older people commonly suffer from inadequate nutrition or poor diets, which could potentially alter the gut microbiota. The essential amino acid (AA) tryptophan (TRP) is a vital diet component that plays a critical role in physiological stress responses, neuropsychiatric health, oxidative systems, inflammatory responses, and GI health. The present study investigates the relationship between varied TRP diets, the gut microbiome, and inflammatory responses in an aged mouse model. We fed aged mice either a TRP-deficient (0.1%), TRP-recommended (0.2%), or high-TRP (1.25%) diet for eight weeks and observed changes in the gut bacterial environment and the inflammatory responses via cytokine analysis (IL-1a, IL-6, IL-17A, and IL-27). The mice on the TRP-deficient diets showed changes in their bacterial abundance of Coriobacteriia class, Acetatifactor genus, Lachnospiraceae family, Enterococcus faecalis species, Clostridium sp genus, and Oscillibacter genus. Further, these mice showed significant increases in IL-6, IL-17A, and IL-1a and decreased IL-27 levels. These data suggest a direct association between dietary TRP content, the gut microbiota microenvironment, and inflammatory responses in aged mice models.


2020 ◽  
Author(s):  
Yeshi Yin ◽  
Miaomiao Li ◽  
Weizhong Gu ◽  
Benhua Zeng ◽  
Wei Liu ◽  
...  

Abstract Background: Carrageenans (CGNs) are widely used in food and pharmaceutical industries. However, the safety of CGNs is still under debate, because degraded CGNs have been reported to promote an intestinal inflammatory response in animal models. Here, we studied the relationship among CGNs, human gut microbiota, and the host inflammatory response.Methods: TLC was selected for detecting the degradation of KCPs by human gut microbiota in vitro batch fermentation system. PCR-DGGE and real time PCR were used for studying bacterial community. ESI-MS was used for KCPs structure analysis. Hematoxylin-eosin staining (HE), immunohistochemistry (IHC) and RNA-seq were used to evaluated the KCPs on host inflammation response in germ-free mice.Results: Thin-layer chromatography (TLC) data showed that CGNs with a molecular weight (Mw) higher than 100 kDa are not degraded by human fecal microbiota, but low Mw CGNs with an Mw around ~4.5 kDa (KCOs) could be degraded by seven of eight human fecal microbiota samples. KCO degrading B. xylanisolvens was isolated from fecal samples, and PCR-DGGE profiling with band sequencing suggested that B. xylanisolvens was the key KCO degrader in the human gut. Two putative κ-carrageenase genes were identified in the genome sequence of B. xylanisolvens. However, their function on KCO degrading was not verified in vitro. And the sulfate group from KCO is not removed after in vitro degradation by human fecal microbiota, as shown by ESI-MS analysis. The effects of KCO and KCO degrading bacteria on the inflammatory response were investigated in germ-free mice. Increased numbers of P-P38-, CD3a-, and CD79a-positive cells were found in the colon and rectum in mice fed with KCO plus KCO degrading bacteria than in mice fed with only KCO or only B. xylanisolvens and E. coli, as shown by RNA-Seq analysis, HE staining, and IHC. Conclusion: Our data suggested that the presence of KCO degrading bacteria promote the pro-inflammatory effects of CGNs.


Endocrinology ◽  
2006 ◽  
Vol 147 (11) ◽  
pp. 5019-5022 ◽  
Author(s):  
Maria Pini ◽  
Joseph A. Sennello ◽  
Lawrence Chan ◽  
Giamila Fantuzzi

Adiponectin (APN) is an adipocyte-derived protein that regulates insulin sensitivity and displays antiinflammatory activities in a variety of experimental models. The present study aimed at investigating the effect of APN deficiency on the inflammatory response to endotoxin (lipopolysaccharide, LPS) and Concanavalin A (ConA) in vivo in mice. Administration of a high dose of LPS (100 μg/mouse) induced production of comparable amounts of IL-6, TNFα, and interferon-γ in wild-type (WT) and APN knockout (KO) mice. Furthermore, LPS-induced hypoglycemia, anorexia, and body weight loss did not differ between WT and APN KO mice. Administration of a low dose of LPS (100 or 10 ng/g) in association with d-galactosamine induced equivalent mortality rates, hepatotoxicity, and serum IL-6 in WT and APN KO mice. Finally, ConA-induced cytokine production and hepatotoxicity were not significantly different between WT and APN KO mice. These data indicate that—despite its well-described role as an antiinflammatory molecule—endogenous APN does not play a critical role in modulating the inflammatory responses to LPS and ConA in mice.


Sign in / Sign up

Export Citation Format

Share Document