SpoVG Regulates Cell Wall Metabolism and Oxacillin Resistance in Methicillin-Resistant Staphylococcus aureus Strain N315
Increasing cases of infections caused by methicillin-resistantStaphylococcus aureus(MRSA) strains in healthy individuals have raised concerns worldwide. MRSA strains are resistant to almost the entire family of β-lactam antibiotics due to the acquisition of an extra penicillin-binding protein, PBP2a. Studies have shown thatspoVGis involved in oxacillin resistance, while the regulatory mechanism remains elusive. In this study, we have found that SpoVG plays a positive role in oxacillin resistance through promoting cell wall synthesis and inhibiting cell wall degradation in MRSA strain N315. Deletion ofspoVGin strain N315 led to a significant decrease in oxacillin resistance and a dramatic increase in Triton X-100-induced autolytic activity simultaneously. Real-time quantitative reverse transcription-PCR revealed that the expression of 8 genes related to cell wall metabolism or oxacillin resistance was altered in thespoVGmutant. Electrophoretic mobility shift assay indicated that SpoVG can directly bind to the putative promoter regions oflytN(murein hydrolase),femA, andlytSR(the two-component system). These findings suggest a molecular mechanism in which SpoVG modulates oxacillin resistance by regulating cell wall metabolism in MRSA.