scholarly journals In VitroActivity of Ceftazidime-Avibactam against 338 Molecularly Characterized Gentamicin-Nonsusceptible Gram-Negative Clinical Isolates Obtained from Patients in Canadian Hospitals

2015 ◽  
Vol 59 (6) ◽  
pp. 3623-3626 ◽  
Author(s):  
Andrew J. Denisuik ◽  
James A. Karlowsky ◽  
Tyler Denisuik ◽  
Wright W. Nichols ◽  
Thomas A. Keating ◽  
...  

ABSTRACTThe mechanism of aminoglycoside resistance among 338 gentamicin-nonsusceptible Gram-negative bacteria (207Enterobacteriaceaeand 131Pseudomonas aeruginosa) was assessed, and thein vitroactivity of ceftazidime-avibactam against these isolates was determined. Aminoglycoside-modifying enzymes were detected in 91.8% ofEnterobacteriaceaeand 13.7% ofP. aeruginosaisolates. A single strain ofKlebsiella pneumoniaeharbored a 16S rRNA methylase (ArmA). The ceftazidime-avibactam MIC90values were 0.5 μg/ml (MIC, ≤8 μg/ml for 100% of isolates) and 16 μg/ml (MIC, ≤8 μg/ml for 87.8% of isolates) against gentamicin-nonsusceptibleEnterobacteriaceaeandP. aeruginosaisolates, respectively.

2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


2013 ◽  
Vol 58 (3) ◽  
pp. 1763-1767 ◽  
Author(s):  
L. V. Perdigão-Neto ◽  
M. S. Oliveira ◽  
C. F. Rizek ◽  
C. M. D. M. Carrilho ◽  
S. F. Costa ◽  
...  

ABSTRACTFosfomycin may be a treatment option for multiresistant Gram-negative bacteria. This study compared susceptibility methods using 94 multiresistant clinical isolates. With agar dilution (AD), susceptibilities were 81%, 7%, 96%, and 100% (CLSI) and 0%, 0%, 96%, and 30% (EUCAST), respectively, forAcinetobacter baumannii,Pseudomonas aeruginosa,Klebsiella pneumoniae, andEnterobacterspp. Categorical agreement between Etest and AD forEnterobacteriaceaeandA. baumanniiwas ≥80%. Disk diffusion was adequate only forEnterobacter. CLSI criteria for urine may be adequate for systemic infections.


mBio ◽  
2011 ◽  
Vol 2 (6) ◽  
Author(s):  
Hanh H. Hoang ◽  
Nicholas N. Nickerson ◽  
Vincent T. Lee ◽  
Anastasia Kazimirova ◽  
Mohamed Chami ◽  
...  

ABSTRACT In Gram-negative bacteria, the Lol and Bam machineries direct the targeting of lipidated and nonlipidated proteins, respectively, to the outer membrane (OM). Using Pseudomonas aeruginosa strains with depleted levels of specific Bam and Lol proteins, we demonstrated a variable dependence of different OM proteins on these targeting pathways. Reduction in the level of BamA significantly affected the ability of the β-barrel membrane protein OprF to localize to the OM, while the targeting of three secretins that are functionally related OM proteins was less affected (PilQ and PscC) or not at all affected (XcpQ). Depletion of LolB affected all lipoproteins examined and had a variable effect on the nonlipidated proteins. While the levels of OprF, PilQ, and PscC were significantly reduced by LolB depletion, XcpQ was unaffected and was correctly localized to the OM. These results suggest that certain β-barrel proteins such as OprF primarily utilize the complete Bam machinery. The Lol machinery participates in the OM targeting of secretins to variable degrees, likely through its involvement in the assembly of lipidated Bam components. XcpQ, but not PilQ or PscC, was shown to assemble spontaneously into liposomes as multimers. This work raises the possibility that there is a gradient of utilization of Bam and Lol insertion and targeting machineries. Structural features of individual proteins, including their β-barrel content, may determine the propensity of these proteins for folding (or misfolding) during periplasmic transit and OM insertion, thereby influencing the extent of utilization of the Bam targeting machinery, respectively. IMPORTANCE Targeting of lipidated and nonlipidated proteins to the outer membrane (OM) compartment in Gram-negative bacteria involves the transfer across the periplasm utilizing the Lol and Bam machineries, respectively. We show that depletion of Bam and Lol components in Pseudomonas aeruginosa does not lead to a general OM protein translocation defect, but the severity (and therefore, Lol and Bam dependence), varies with individual proteins. XcpQ, the secretin component of the type II secretion apparatus, is translocated into the OM without the assistance of Bam or Lol machineries. The hypothesis that XcpQ, after secretion across the cytoplasmic membrane, does not utilize the OM targeting machineries was supported by demonstrating that in vitro-synthesized XcpQ (but not the other P. aeruginosa secretins) can spontaneously incorporate into lipid vesicles. Therefore, the requirement for ancillary factors appears to be, in certain instances, dictated by the intrinsic properties of individual OM proteins, conceivably reflecting their propensities to misfold during periplasmic transit.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
Maxime Bour ◽  
Damien Fournier ◽  
Thomas Jové ◽  
Armelle Pouzol ◽  
Guillaume Miltgen ◽  
...  

ABSTRACT Four sequence type 664 (ST664) (serotype O:5) strains of Pseudomonas aeruginosa that were highly resistant to antibiotics, including ceftolozane-tazobactam and ceftazidime-avibactam, but were susceptible to colistin were found to harbor the gene encoding the rare class C β-lactamase PAC-1 on a chromosomally located Tn1721-like transposon. The blaPAC-1 gene was associated with the 16S rRNA methylase determinant rmtF2, which confers pan-aminoglycoside resistance. These genotypically related strains were isolated in repatriated patients from Mauritius and Afghanistan and were close to a lineage reported in Nepal, Pakistan, and India.


2020 ◽  
Vol 58 (4) ◽  
Author(s):  
Delphine Girlich ◽  
Marine Laguide ◽  
Laurent Dortet ◽  
Thierry Naas

ABSTRACT The Revogene Carba C assay (formerly GenePOC Carba assay) is a multiplex nucleic acid-based in vitro diagnostic test intended for the detection of carbapenemase-producing Enterobacterales (CPE) from cultured colonies. This assay was evaluated directly on colonies of 118 well-characterized Enterobacterales with reduced susceptibility to carbapenems and on 49 multidrug-resistant (MDR) Pseudomonas aeruginosa and 40 MDR Acinetobacter baumannii isolates. The Revogene Carba C assay’s performance was high, as it was able to detect the five major carbapenemases (NDM, VIM, IMP, KPC, and OXA-48). In Enterobacterales, sensitivity and specificity were 100%. When extrapolating the results to the French CPE epidemiology between 2012 and 2018, this assay would have detected 99.28% of the 9,624 CPE isolates sent to the French NRC, missing 69 CPE isolates (2 GES-5, 10 OXA-23, 2 TMB-1, 1 SME-4, 53 IMI, and 1 FRI). The overall sensitivity and specificity for CP P. aeruginosa were 93.7 and 100%, respectively, as two rare IMP variants (IMP-31 and -46) were not detected. Extrapolating these results to the French epidemiology of CP P. aeruginosa in 2017, 93.3% would have been identified, missing only 1 DIM and 10 GES variants. The Revogene Carba C assay accurately identified the targeted carbapenemase genes in A. baumannii, but when extrapolating these results to the French CP A. baumannii epidemiology of 2017, only 12.50% of them could be detected, as OXA-23 is the most prevalent carbapenemase in CP A. baumannii. The Revogene Carba C assay showed excellent sensitivity and specificity for the five most common carbapenemases regardless of the bacterial host. It is well adapted to the CPE and CP P. aeruginosa epidemiology of many countries worldwide, which makes it suitable for use in the routine microbiology laboratory, with a time to result of ca. 85 min for eight isolates simultaneously.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Debora Rubio-Aparicio ◽  
Jeff Loutit ◽  
Michael Dudley ◽  
Olga Lomovskaya

ABSTRACT This study investigated whether pulmonary surfactant has an effect on the in vitro antibacterial activity of either meropenem alone or meropenem in combination with vaborbactam at a fixed concentration of 8 μg/ml against several Klebsiella pneumoniae carbapenemase (KPC)-producing strains of Gram-negative bacteria. Results showed that the potency of meropenem alone and that of meropenem-vaborbactam were not affected when tested with pulmonary surfactant.


2006 ◽  
Vol 50 (1) ◽  
pp. 178-184 ◽  
Author(s):  
Jun-ichi Wachino ◽  
Kunikazu Yamane ◽  
Keigo Shibayama ◽  
Hiroshi Kurokawa ◽  
Naohiro Shibata ◽  
...  

ABSTRACT Proteus mirabilis ARS68, which demonstrated a very high level of resistance to various aminoglycosides, was isolated in 2003 from an inpatient in Japan. The aminoglycoside resistance of this strain could not be transferred to recipient strains Escherichia coli CSH-2 and E. coli HB101 by a general conjugation experiment, but E. coli DH5α was successfully transformed by electroporation with the plasmid of the parent strain, ARS68, and acquired an unusually high degree of resistance against aminoglycosides. Cloning and sequencing analyses revealed that the presence of a novel 16S rRNA methylase gene, designated rmtC, was responsible for resistance in strain ARS68 and its transformant. The G+C content of rmtC was 41.1%, and the deduced amino acid sequences of the newly identified 16S rRNA methylase, RmtC, shared a relatively low level of identity (≤29%) to other plasmid-mediated 16S rRNA methylases, RmtA, RmtB, and ArmA, which have also been identified in pathogenic gram-negative bacilli. Also, RmtC shared a low level of identity (≤28%) with the other 16S rRNA methylases found in aminoglycoside-producing actinomycetes. The purified histidine-tagged RmtC clearly showed methyltransferase activity against E. coli 16S rRNA in vitro. rmtC was located downstream of an ISEcp1-like element containing tnpA. Several plasmid-mediated 16S rRNA methylases have been identified in pathogenic gram-negative bacilli belonging to the family Enterobacteriaceae, and some of them are dispersing worldwide. The acceleration of aminoglycoside resistance among gram-negative bacilli by producing plasmid-mediated 16S rRNA methylases, such as RmtC, RmtB, and RmtA, may indeed become an actual clinical hazard in the near future.


2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


2012 ◽  
Vol 79 (2) ◽  
pp. 718-721 ◽  
Author(s):  
F. Heath Damron ◽  
Elizabeth S. McKenney ◽  
Herbert P. Schweizer ◽  
Joanna B. Goldberg

ABSTRACTWe describe a mini-Tn7-based broad-host-range expression cassette for arabinose-inducible gene expression from the PBADpromoter. This delivery vector, pTJ1, can integrate a single copy of a gene into the chromosome of Gram-negative bacteria for diverse genetic applications, of which several are discussed, usingPseudomonas aeruginosaas the model host.


Sign in / Sign up

Export Citation Format

Share Document