scholarly journals In VitroPharmacokinetic/Pharmacodynamic Modeling of Voriconazole Activity against Aspergillus Species in a NewIn VitroDynamic Model

2012 ◽  
Vol 56 (10) ◽  
pp. 5321-5327 ◽  
Author(s):  
R. Al-Saigh ◽  
A. Elefanti ◽  
A. Velegraki ◽  
L. Zerva ◽  
J. Meletiadis

ABSTRACTThe pharmacodynamics (PD) of voriconazole activity againstAspergillusspp. were studied using a newin vitrodynamic model simulating voriconazole human pharmacokinetics (PK), and the PK-PD data were bridged with human drug exposure to assess the percent target (near-maximum activity) attainment of different voriconazole dosages. ThreeAspergillusclinical isolates (1A. fumigatus, 1A. flavus, and 1A. terreusisolate) with CLSI MICs of 0.5 mg/liter were tested in anin vitromodel simulating voriconazole PK in human plasma withCmaxvalues of 7, 3.5, and 1.75 mg/liter and at1/2of 6 h. The area under the galactomannan index-time curve (AUCGI) was used as the PD parameter.In vitroPK-PD data were bridged with population human PK of voriconazole exposure, and the percent target attainment was calculated. Thein vitroPK-PD relationship offAUC0-24-AUCGIfollowed a sigmoid pattern (globalR2= 0.97), with near-maximum activities (10% fungal growth) observed at anfAUC0-24(95% confidence interval [CI]) of 18.9 (14.4 to 23.1) mg · h/liter againstA. fumigatus, 26.6 (21.1 to 32.9) mg · h/liter againstA. flavus, and 36.2 (27.8 to 45.7) mg · h/liter againstA. terreus(F test;P< 0.0001). Target attainment for 3, 4, and 5 mg/kg-of-body-weight voriconazole dosages was 24% (11 to 45%), 80% (32 to 97%), and 93% (86 to 97%) forA. fumigatus, 12% (5 to 26%), 63% (17 to 93%), and 86% (73 to 94%) forA. flavus, and 4% (2 to 11%), 36% (6 to 83%), and 68% (47 to 83%) forA. terreus. Based on thein vitroexposure-effect relationships, a standard dosage of voriconazole may be adequate for most patients withA. fumigatusbut notA. flavusandA. terreusinfections, for which a higher drug exposure may be required. This could be achieved using a higher voriconazole dosage, thus highlighting the usefulness of therapeutic drug monitoring in patients receiving a standard dosage.

2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Sazlyna Mohd Sazlly Lim ◽  
Aaron J. Heffernan ◽  
Jason A. Roberts ◽  
Fekade B. Sime

ABSTRACT Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are now considered potential treatments for CR-AB. This study aimed to explore the utility of fosfomycin-sulbactam combination (FOS/SUL) therapy against CR-AB isolates. Synergism of FOS/SUL against 50 clinical CR-AB isolates was screened using the checkerboard method. Thereafter, time-kill studies against two CR-AB isolates were performed. The time-kill data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Monte Carlo simulations were then performed to estimate the probability of stasis, 1-log kill, and 2-log kill after 24 h of combination therapy. The FOS/SUL combination demonstrated a synergistic effect against 74% of isolates. No antagonism was observed. The MIC50 and MIC90 of FOS/SUL were decreased 4- to 8-fold, compared to the monotherapy MIC50 and MIC90. In the time-kill studies, the combination displayed bactericidal activity against both isolates and synergistic activity against one isolate at the highest clinically achievable concentrations. Our PK/PD model was able to describe the interaction between fosfomycin and sulbactam in vitro. Bacterial kill was mainly driven by sulbactam, with fosfomycin augmentation. FOS/SUL regimens that included sulbactam at 4 g every 8 h demonstrated a probability of target attainment of 1-log10 kill at 24 h of ∼69 to 76%, compared to ∼15 to 30% with monotherapy regimens at the highest doses. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that FOS/SUL may potentially be effective against some CR-AB infections.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Sujata M. Bhavnani ◽  
Jeffrey P. Hammel ◽  
Elizabeth A. Lakota ◽  
M. Courtney Safir ◽  
Brian D. VanScoy ◽  
...  

ABSTRACT ME1100 (arbekacin inhalation solution) is an inhaled aminoglycoside that is being developed to treat patients with hospital-acquired and ventilator-associated bacterial pneumonia (HABP and VABP, respectively). Pharmacokinetic-pharmacodynamic (PK-PD) target attainment analyses were undertaken to evaluate ME1100 regimens for the treatment of patients with HABP/VABP. The data used included a population pharmacokinetic (PPK) 4-compartment model with 1st-order elimination, nonclinical PK-PD targets from one-compartment in vitro and/or in vivo infection models, and in vitro surveillance data. Using the PPK model, total-drug epithelial lining fluid (ELF) concentration-time profiles were generated for simulated patients with varying creatinine clearance (CLcr) (ml/min/1.73 m2) values. Percent probabilities of PK-PD target attainment by MIC were determined based on the ratio of total-drug ELF area under the concentration-time curve (AUC) to MIC (AUC/MIC ratio) targets associated with 1- and 2-log10 CFU reductions from baseline for Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Percent probabilities of PK­PD target attainment based on PK-PD targets for a 1-log10 CFU reduction from baseline at MIC values above the MIC90 value for K. pneumoniae (8 μg/ml), P. aeruginosa (4 μg/ml), and S. aureus (0.5 μg/ml) were ≥99.8% for ME1100 600 mg twice daily (BID) in simulated patients with CLcr values >80 to ≤120 ml/min/1.73 m2. ME1100 600 mg BID, 450 mg BID, and 600 mg once daily in simulated patients with CLcr values >50 to ≤80, >30 to ≤50, and 0 to ≤30 ml/min/1.73 m2, respectively, provided arbekacin exposures that best matched those for 600 mg BID in simulated patients with normal renal function. These data provide support for ME1100 as a treatment for patients with HABP/VABP.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
María del Mar Castro ◽  
Maria Adelaida Gomez ◽  
Anke E. Kip ◽  
Alexandra Cossio ◽  
Eduardo Ortiz ◽  
...  

ABSTRACT An open-label pharmacokinetics (PK) clinical trial was conducted to comparatively assess the PK and explore the pharmacodynamics (PD) of miltefosine in children and adults with cutaneous leishmaniasis (CL) in Colombia. Sixty patients, 30 children aged 2 to 12 years and 30 adults aged 18 to 60 years, were enrolled. Participants received miltefosine (Impavido) at a nominal dose of 2.5 mg/kg/day for 28 days. Miltefosine concentrations were measured in plasma and peripheral blood mononuclear cells by liquid chromatography-tandem mass spectrometry of samples obtained during treatment and up to 6 months following completion of treatment, when therapeutic outcome was determined. Fifty-two patients were cured, 5 pediatric patients failed treatment, and 3 participants were lost to follow-up. Leishmania (Viannia) panamensis predominated among the strains isolated (42/46; 91%). Noncompartmental analysis demonstrated that plasma and intracellular miltefosine concentrations were, overall, lower in children than in adults. Exposure to miltefosine, estimated by area under the concentration-time curve and maximum concentration, was significantly lower in children in both the central and intracellular compartments (P < 0.01). Leishmania persistence was detected in 43% of study participants at the end of treatment and in 27% at 90 days after initiation of treatment. Clinical response was not dependent on parasite elimination. In vitro miltefosine susceptibility was similar for Leishmania strains from adults and children. Our results document PK differences for miltefosine in children and adults with cutaneous leishmaniasis that affect drug exposure and could influence the outcome of treatment, and they provide bases for optimizing therapeutic regimens for CL in pediatric populations. (This study has been registered at ClinicalTrials.gov under identifier NCT01462500.)


2018 ◽  
Vol 62 (5) ◽  
pp. e02516-17 ◽  
Author(s):  
Helen Box ◽  
Clara Negri ◽  
Joanne Livermore ◽  
Sarah Whalley ◽  
Adam Johnson ◽  
...  

ABSTRACT Scedosporium apiospermum is a medically important fungal pathogen that causes a wide range of infections in humans. There are relatively few antifungal agents that are active against Scedosporium spp. Little is known about the pharmacodynamics of voriconazole against Scedosporium. Both static and dynamic in vitro models of invasive scedosporiosis were developed. Monoclonal antibodies that target a soluble cell wall antigen secreted by Scedosporium apiospermum were used to describe the pharmacodynamics of voriconazole. Mathematical pharmacokinetic-pharmacodynamic models were fitted to the data to estimate the drug exposure required to suppress the release of fungal antigen. The experimental results were bridged to humans using Monte Carlo simulation. All 3 strains of S. apiospermum tested invaded through the cellular bilayer of the in vitro models and liberated antigen. There was a concentration-dependent decline in the amount of antigen, with near maximal antifungal activity against all 3 strains being achieved with voriconazole at 10 mg/liter. Similarly, there was a drug exposure-dependent decline in the amount of circulating antigen in the dynamic model and complete suppression of antigen, with an area under the concentration-time curve (AUC) of approximately 80 mg · h/liter. A regression of the AUC/MIC versus the area under the antigen-time curve showed that a near maximal effect was obtained with an AUC/MIC of approximately 100. Monte Carlo simulation suggested that only isolates with an MIC of 0.5 mg/liter enabled pharmacodynamic targets to be achieved with a standard regimen of voriconazole. Isolates with higher MICs may need drug exposure targets higher than those currently recommended for other fungi.


2010 ◽  
Vol 54 (11) ◽  
pp. 4605-4610 ◽  
Author(s):  
Federico Pea ◽  
Mario Furlanut ◽  
Piergiorgio Cojutti ◽  
Francesco Cristini ◽  
Eleonora Zamparini ◽  
...  

ABSTRACT The objective of the present retrospective observational study carried out in patients receiving a standard dosage of linezolid and undergoing routine therapeutic drug monitoring (TDM) was to assess the interindividual variability in plasma exposure, to identify the prevalence of attainment of optimal pharmacodynamics, and to define if an intensive program of TDM may be warranted in some categories of patients. Linezolid plasma concentrations (trough [C min] and peak [C max] levels) were analyzed by means of a high-performance liquid chromatography (HPLC) method, and daily drug exposure was estimated (daily area under the plasma concentration-time curve [AUC24]). The final database included 280 C min and 223 C max measurements performed in 92 patients who were treated with the fixed 600-mg dose every 12 h (q12h) intravenously (n = 58) or orally (n = 34). A wide variability was observed (median values [interquartile range]: 3.80 mg/liter [1.75 to 7.53 mg/liter] for C min, 14.70 mg/liter [10.57 to 19.64] for C max, and 196.08 mg·h/liter [144.02 to 312.10 mg·h/liter] for estimated AUC24). Linezolid C min was linearly correlated with estimated AUC24 (r 2 = 0.85). Optimal pharmacodynamic target attainment (defined as C min of ≥2 mg/liter and/or AUC24/MIC90 ratio of >80) was obtained in about 60 to 70% of cases, but potential overexposure (defined as C min of ≥10 mg/liter and/or AUC24 of ≥400 mg·h/liter) was documented in about 12% of cases. A significantly higher proportion of cases with potential overexposure received cotreatment with omeprazole, amiodarone, or amlodipine. Our study suggests that the application of TDM might be especially worthwhile in about 30% of cases with the intent of avoiding either the risk of dose-dependent toxicity or that of treatment failure.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
James Albiero ◽  
Josmar Mazucheli ◽  
Juliana Pimenta dos Reis Barros ◽  
Marcia Maria dos Anjos Szczerepa ◽  
Sheila Alexandra Belini Nishiyama ◽  
...  

ABSTRACTFosfomycin combined with other antimicrobials has shown good efficacy against multidrug-resistant (MDR) bacteria in bothin vitroand clinical studies; however, the activity of fosfomycin combined with other antimicrobials against metallo-β-lactamase (MBL)-producingPseudomonas aeruginosastrains has not been tested. The objective of this study was to determine the synergism and optimal intravenous dosing regimens of fosfomycin with meropenem against MDR and MBL-producingP. aeruginosastrains. The MICs of both antimicrobials were determined by the checkerboard method and analyzed by two synergism tests with 19 clones ofP. aeruginosaisolates, 10 of which were MBL producers. A pharmacodynamic (PD) analysis was performed for meropenem (administered at 1 g every 8 h [q8h], 1.5 g every 6 h [q6h], and 2 g q8h) and fosfomycin (administered at 4 g q8h, 4 g q6h, 6 g q8h, and 8 g q8h) regimens with a dose reduction for renal impairment by determining the probability of target attainment (PTA) for target PD indices of meropenem (the percentage of the time in a 24-h duration at which the free drug concentration remains above the MIC [fT>MIC], ≥40%) and fosfomycin (the ratio of the area under the free drug concentration-versus-time curve over 24 h and the MIC [fAUC/MIC], ≥40.8). The combination reduced the MIC50and MIC90by 8-fold. Seven (44%) isolates with MICs in the intermediate or resistant ranges became sensitive to meropenem. For the MBL-producing isolates, the combination resulted in 40% of isolates becoming sensitive to meropenem. The meropenem regimens reached a PTA of ≥90% (MIC = 4 μg/ml) in 6 (32%) isolates when they were used as monotherapy and 13 (68%) isolates when they were combined with fosfomycin. None of the fosfomycin monotherapy regimens reached the PTA of ≥90% (MIC = 16 μg/ml). When combined with meropenem, the fosfomycin regimens reached the PTA of ≥90% in 14 (74%) isolates. The increase in pharmacodynamic activities resulting from the synergistic action of meropenem with fosfomycin demonstrates the potential relevance of this combination to fight infections caused by MDR and MBL-producingP. aeruginosastrains.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Pier Giorgio Cojutti ◽  
Virginia Ramos-Martin ◽  
Isabella Schiavon ◽  
Paolo Rossi ◽  
Massimo Baraldo ◽  
...  

ABSTRACT A retrospective study was conducted in a large sample of acutely hospitalized older patients who underwent therapeutic drug monitoring during levofloxacin treatment. The aim was to assess the population pharmacokinetics (popPK) and pharmacodynamics of levofloxacin among older patients. PopPK and Monte Carlo simulation were performed to define the permissible doses in older patients according to various degrees of renal function. Classification and regression tree (CART) analysis was used to detect the cutoff 24-hour area under the concentration-time curve (AUC24)/MIC ratio that best correlated with the clinical outcome. The probability of target attainment (PTA) of this value was calculated against different pathogens. A total of 168 patients were included, and 330 trough and 239 peak concentrations were used for the popPK analysis. Creatinine clearance (CrCL) was the only covariate that improved the model fit (levofloxacin CL = 0.399 + 0.051 × CrCLCKD-EPI [creatinine clearance estimated by means of the chronic kidney disease epidemiology]). Drug doses ranged between 500 mg every 48 h and 500 mg every 12 h in relation to different renal functions. The identified cutoff AUC24/MIC ratio (≥95.7) was the only covariate that correlated with a favorable clinical outcome in multivariate regression analysis (odds ratio [OR], 20.85; 95% confidence interval [CI], 1.56 to 186.73). PTAs were optimal (>80%) against Escherichia coli and Haemophilus influenzae, borderline against Staphylococcus aureus, and suboptimal against Pseudomonas aeruginosa. The levofloxacin doses defined in our study may be effective for the treatment of infections due to bacterial pathogens, with an MIC of ≤0.5 mg/liter in older patients with various degrees of renal function, while minimizing the toxicity risk. Conversely, the addition of another active antimicrobial should be considered whenever treating infections caused by less susceptible pathogens.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Elizabeth A. Lakota ◽  
Justin C. Bader ◽  
Voon Ong ◽  
Ken Bartizal ◽  
Lynn Miesel ◽  
...  

ABSTRACT CD101 is a novel echinocandin with concentration-dependent fungicidal activity in vitro and a long half-life (∼133 h in humans, ∼70 to 80 h in mice). Given these characteristics, it is likely that the shape of the CD101 exposure (i.e., the time course of CD101 concentrations) influences efficacy. To test this hypothesis, doses which produce the same total area under the concentration-time curve (AUC) were administered to groups of neutropenic ICR mice infected with Candida albicans R303 using three different schedules. A total CD101 dose of 2 mg/kg was administered as a single intravenous (i.v.) dose or in equal divided doses of either 1 mg/kg twice weekly or 0.29 mg/kg/day over 7 days. The studies were performed using a murine disseminated candidiasis model. Animals were euthanized at 168 h following the start of treatment. Fungi grew well in the no-treatment control group and showed variable changes in fungal density in the treatment groups. When the CD101 AUC from 0 to 168 h (AUC0–168) was administered as a single dose, a >2 log10 CFU reduction from the baseline at 168 h was observed. When twice-weekly and daily regimens with similar AUC values were administered, net fungal stasis and a >1 log10 CFU increase from the baseline were observed, respectively. These data support the hypothesis that the shape of the CD101 AUC influences efficacy. Thus, CD101 administered once per week demonstrated a greater degree of fungal killing than the same dose divided into twice-weekly or daily regimens.


2011 ◽  
Vol 56 (2) ◽  
pp. 703-707 ◽  
Author(s):  
Sergio Wittlin ◽  
Eric Ekland ◽  
J Carl Craft ◽  
Julie Lotharius ◽  
Ian Bathurst ◽  
...  

ABSTRACTWith the emergence ofPlasmodium falciparuminfections exhibiting increased parasite clearance times in response to treatment with artemisinin-based combination therapies, the need for new therapeutic agents is urgent. Solithromycin, a potent new fluoroketolide currently in development, has been shown to be an effective, broad-spectrum antimicrobial agent. Malarial parasites possess an unusual organelle, termed the apicoplast, which carries a cryptic genome of prokaryotic origin that encodes its own translation and transcription machinery. Given the similarity of apicoplast and bacterial ribosomes, we have examined solithromycin for antimalarial activity. Other antibiotics known to target the apicoplast, such as the macrolide azithromycin, demonstrate a delayed-death effect, whereby treated asexual blood-stage parasites die in the second generation of drug exposure. Solithromycin demonstrated potentin vitroactivity against the NF54 strain ofP. falciparum, as well as against two multidrug-resistant strains, Dd2 and 7G8. The dramatic increase in potency observed after two generations of exposure suggests that it targets the apicoplast. Solithromycin also retained potency against azithromycin-resistant parasites derived from Dd2 and 7G8, although these lines did demonstrate a degree of cross-resistance. In anin vivomodel ofP. bergheiinfection in mice, solithromycin demonstrated a 100% cure rate when administered as a dosage regimen of four doses of 100 mg/kg of body weight, the same dose required for artesunate or chloroquine to achieve 100% cure rates in this rodent malaria model. These promisingin vitroandin vivodata support further investigations into the development of solithromycin as an antimalarial agent.


2018 ◽  
Vol 62 (12) ◽  
Author(s):  
Nicole E. Scangarella-Oman ◽  
Mohammad Hossain ◽  
Paula B. Dixon ◽  
Karen Ingraham ◽  
Sharon Min ◽  
...  

ABSTRACTWe evaluated microbiological correlates for the successful treatment ofNeisseria gonorrhoeaeisolates from a phase 2 study of gepotidacin, a novel triazaacenaphthylene antibacterial, for therapy of uncomplicated urogenital gonorrhea. Culture, susceptibility testing, genotypic characterization, and frequency of resistance (FoR) were performed for selected isolates. Microbiological success was defined as culture-confirmed eradication ofN. gonorrhoeae. Against 69 baseline urogenital isolates, gepotidacin MICs ranged from ≤0.06 to 1 µg/ml (MIC90= 0.5 µg/ml). For gepotidacin, the ratio of the area under the free-drug concentration-time curve to the MIC (fAUC/MIC) was associated with therapeutic success. Success was 100% (61/61) atfAUC/MICs of ≥48 and decreased to 63% (5/8) forfAUC/MICs of ≤25. All 3 isolates from microbiological failures were ciprofloxacin resistant, had a baseline gepotidacin MIC of 1 µg/ml, and carried a preexisting ParC D86N mutation, a critical residue for gepotidacin binding. In a test-of-cure analysis, the resistance to gepotidacin emerged in 2 isolates (MICs increased ≥32-fold) with additional GyrA A92T mutations, also implicated in gepotidacin binding. Test-of-cure isolates had the same sequence type as the corresponding baseline isolates. For 5 selected baseline isolates, all carrying a ParC D86N mutation, thein vitroFoR to gepotidacin was low (10−9to 10−10); the resistant mutants had the same A92T mutation as the 2 isolates in which resistance emerged. Five participants with isolates harboring the ParC D86N mutation were treatment successes. In summary,fAUC/MICs of ≥48 predicted 100% microbiological success, including 3 isolates with the ParC D86N mutation (fAUC/MICs ≥ 97). Pharmacokinetic/pharmacodynamic determinations may help to evaluate new therapies for gonorrhea; further study of gepotidacin is warranted. (This study has been registered at ClinicalTrials.gov under identifier NCT02294682.)


Sign in / Sign up

Export Citation Format

Share Document