scholarly journals DNA Microarray for Genotyping Antibiotic Resistance Determinants in Acinetobacter baumannii Clinical Isolates

2013 ◽  
Vol 57 (10) ◽  
pp. 4761-4768 ◽  
Author(s):  
Simon Dally ◽  
Karin Lemuth ◽  
Martin Kaase ◽  
Steffen Rupp ◽  
Cornelius Knabbe ◽  
...  

ABSTRACTIn recent decades,Acinetobacter baumanniihas emerged as an organism of great concern due to its ability to accumulate antibiotic resistance. In order to improve the diagnosis of resistance determinants inA. baumanniiin terms of lead time and accuracy, we developed a microarray that can be used to detect 91 target sequences associated with antibiotic resistance within 4 h from bacterial culture to result. The array was validated with 60 multidrug-resistant strains ofA. baumanniiin a blinded, prospective study. The results were compared to phenotype results determined by the automated susceptibility testing system VITEK2. Antibiotics considered were piperacillin-tazobactam, ceftazidime, imipenem, meropenem, trimethoprim-sulfamethoxazole, amikacin, gentamicin, tobramycin, ciprofloxacin, and tigecycline. The average positive predictive value, negative predictive value, sensitivity, and specificity were 98, 98, 99, and 94%, respectively. For carbapenemase genes, the array results were compared to singleplex PCR results provided by the German National Reference Center for Gram-Negative Pathogens, and results were in complete concordance. The presented array is able to detect all relevant resistance determinants ofA. baumanniiin parallel. The short handling time of 4 h from culture to result helps to provide fast results in order to initiate adequate anti-infective therapy for critically ill patients. Another application would be data acquisition for epidemiologic surveillance.

2018 ◽  
Vol 7 (5) ◽  
Author(s):  
Clay S. Crippen ◽  
Steven Huynh ◽  
William G. Miller ◽  
Craig T. Parker ◽  
Christine M. Szymanski

Antimicrobial resistance is a major problem worldwide. Understanding the interplay between drug-resistant pathogens, such as Acinetobacter baumannii and related species, potentially acting as environmental reservoirs is critical for preventing the spread of resistance determinants.


2008 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Jennifer K. Mak ◽  
Mi-Jurng Kim ◽  
Jeanette Pham ◽  
John Tapsall ◽  
Peter A. White

2015 ◽  
Vol 81 (10) ◽  
pp. 3357-3368 ◽  
Author(s):  
Man Hwan Oh ◽  
Je Chul Lee ◽  
Jungmin Kim ◽  
Chul Hee Choi ◽  
Kyudong Han

ABSTRACTThe traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistantAcinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection ofA. baumanniimerodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion inA. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition byA. baumanniiATCC 19606 and toompAgene deletion in otherA. baumanniistrains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistantA. baumannii.


2011 ◽  
Vol 55 (10) ◽  
pp. 4506-4512 ◽  
Author(s):  
Hua Zhou ◽  
Tongwu Zhang ◽  
Dongliang Yu ◽  
Borui Pi ◽  
Qing Yang ◽  
...  

ABSTRACTWe previously reported that the multidrug-resistant (MDR)Acinetobacter baumanniistrain MDR-ZJ06, belonging to European clone II, was widely spread in China. In this study, we report the whole-genome sequence of this clinically important strain. A 38.6-kb AbaR-type genomic resistance island (AbaR22) was identified in MDR-ZJ06. AbaR22 has a structure similar to those of the resistance islands found inA. baumanniistrains AYE and AB0057, but it contained only a few antibiotic resistance genes. The region of resistant gene accumulation as previously described was not found in AbaR22. In the chromosome of the strain MDR-ZJ06, we identified the geneblaoxa-23in a composite transposon (Tn2009). Tn2009shared the backbone with otherA. baumanniitransponsons that harborblaoxa-23, but it was bracketed by two ISAba1elements which were transcribed in the same orientation. MDR-ZJ06 also expressed thearmAgene on its plasmid pZJ06, and this gene has the same genetic environment as thearmAgene of theEnterobacteriaceae. These results suggest variability of resistance acquisition even in closely relatedA. baumanniistrains.


2014 ◽  
Vol 67 (6) ◽  
pp. 439-444 ◽  
Author(s):  
Xu Xiao-min ◽  
Fan You-fen ◽  
Feng Wei-yun ◽  
Mi Zu-huang ◽  
Weng Xing-bei

2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Marinelle Rodrigues ◽  
Sara W. McBride ◽  
Karthik Hullahalli ◽  
Kelli L. Palmer ◽  
Breck A. Duerkop

ABSTRACT The innovation of new therapies to combat multidrug-resistant (MDR) bacteria is being outpaced by the continued rise of MDR bacterial infections. Of particular concern are hospital-acquired infections (HAIs) that are recalcitrant to antibiotic therapies. The Gram-positive intestinal pathobiont Enterococcus faecalis is associated with HAIs, and some strains are MDR. Therefore, novel strategies to control E. faecalis populations are needed. We previously characterized an E. faecalis type II CRISPR-Cas system and demonstrated its utility in the sequence-specific removal of antibiotic resistance determinants. Here, we present work describing the adaption of this CRISPR-Cas system into a constitutively expressed module encoded on a pheromone-responsive conjugative plasmid that efficiently transfers to E. faecalis for the selective removal of antibiotic resistance genes. Using in vitro competition assays, we show that these CRISPR-Cas-encoding delivery plasmids, or CRISPR-Cas antimicrobials, can reduce the occurrence of antibiotic resistance in enterococcal populations in a sequence-specific manner. Furthermore, we demonstrate that deployment of CRISPR-Cas antimicrobials in the murine intestine reduces the occurrence of antibiotic-resistant E. faecalis by several orders of magnitude. Finally, we show that E. faecalis donor strains harboring CRISPR-Cas antimicrobials are immune to uptake of antibiotic resistance determinants in vivo. Our results demonstrate that conjugative delivery of CRISPR-Cas antimicrobials may be adaptable for future deployment from probiotic bacteria for exact targeting of defined MDR bacteria or for precision engineering of polymicrobial communities in the mammalian intestine.


2013 ◽  
Vol 76 (4) ◽  
pp. 529-531 ◽  
Author(s):  
Sofiane Bakour ◽  
Abdelaziz Touati ◽  
Farida Sahli ◽  
Abdennour Ait Ameur ◽  
Djamila Haouchine ◽  
...  

2015 ◽  
Vol 59 (7) ◽  
pp. 4094-4105 ◽  
Author(s):  
Jennifer L. Dale ◽  
Julian Cagnazzo ◽  
Chi Q. Phan ◽  
Aaron M. T. Barnes ◽  
Gary M. Dunny

ABSTRACTThe emergence of multidrug-resistant bacteria and the limited availability of new antibiotics are of increasing clinical concern. A compounding factor is the ability of microorganisms to form biofilms (communities of cells encased in a protective extracellular matrix) that are intrinsically resistant to antibiotics.Enterococcus faecalisis an opportunistic pathogen that readily forms biofilms and also has the propensity to acquire resistance determinants via horizontal gene transfer. There is intense interest in the genetic basis for intrinsic and acquired antibiotic resistance inE. faecalis, since clinical isolates exhibiting resistance to multiple antibiotics are not uncommon. We performed a genetic screen using a library of transposon (Tn) mutants to identifyE. faecalisbiofilm-associated antibiotic resistance determinants. Five Tn mutants formed wild-type biofilms in the absence of antibiotics but produced decreased biofilm biomass in the presence of antibiotic concentrations that were subinhibitory to the parent strain. Genetic determinants responsible for biofilm-associated antibiotic resistance include components of the quorum-sensing system (fsrA,fsrC, andgelE) and two glycosyltransferase (GTF) genes (epaIandepaOX). We also found that the GTFs play additional roles inE. faecalisresistance to detergent and bile salts, maintenance of cell envelope integrity, determination of cell shape, polysaccharide composition, and conjugative transfer of the pheromone-inducible plasmid pCF10. TheepaOXgene is located in a variable extended region of the enterococcal polysaccharide antigen (epa) locus. These data illustrate the importance of GTFs inE. faecalisadaptation to diverse growth conditions and suggest new targets for antimicrobial design.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Ilya S. Korotetskiy ◽  
Monique Joubert ◽  
Sade M. Magabotha ◽  
Ardak B. Jumagaziyeva ◽  
Sergey V. Shilov ◽  
...  

The strain Acinetobacter baumannii ATCC BAA-1790 was sequenced as a model for nosocomial multidrug-resistant infections. Long-read PacBio sequencing revealed a circular chromosome of 3,963,235 bp with two horizontally transferred genomic islands and a 67,023-bp plasmid. Multiple antibiotic resistance genes and genome methylation patterns were identified.


Sign in / Sign up

Export Citation Format

Share Document