scholarly journals Comparative Pharmacodynamics of Single-Dose Oritavancin and Daily High-Dose Daptomycin Regimens against Vancomycin-Resistant Enterococcus faecium Isolates in an In Vitro Pharmacokinetic/Pharmacodynamic Model of Infection

2017 ◽  
Vol 61 (10) ◽  
Author(s):  
Adam Belley ◽  
David Lalonde-Séguin ◽  
Francis F. Arhin ◽  
Greg Moeck

ABSTRACT There are limited therapeutic options to treat infections caused by vancomycin-resistant Enterococcus faecium (VREfm). The lipoglycopeptide oritavancin exhibits in vitro activity against this pathogen, although its utility against infections caused by VREfm has not been clinically established. In this study, the pharmacodynamic activity of free-drug levels associated with 12 mg/kg/day of daptomycin and a single 1,200-mg dose of oritavancin were determined against three VanA VREfm isolates in an in vitro pharmacokinetic/pharmacodynamic model.

2012 ◽  
Vol 56 (6) ◽  
pp. 3174-3180 ◽  
Author(s):  
Ashley D. Hall ◽  
Molly E. Steed ◽  
Cesar A. Arias ◽  
Barbara E. Murray ◽  
Michael J. Rybak

ABSTRACTDaptomycin MICs for enterococci are typically 1- to 2-fold higher than those forStaphylococcus aureus, and there is an imminent need to establish the optimal dose for appropriate treatment of enterococcal infections. We investigated the bactericidal activity of daptomycin at various dose exposures compared to that of linezolid against vancomycin-resistant enterococcus (VRE) in anin vitropharmacokinetic/pharmacodynamic model utilizing simulated endocardial vegetations over 96 h. Daptomycin at doses of 6, 8, 10, and 12 mg/kg of body weight/day and linezolid at a dose of 600 mg every 12 h were evaluated against two clinical vancomycin-resistantEnterococcus faeciumstrains (EFm11499 and 09-184D1051), one of which was linezolid resistant (09-184D1051), and one clinical vancomycin-resistantEnterococcus faecalisstrain (EFs11496). Daptomycin MICs were 4, 2, and 0.5 μg/ml for EFm11499, 09-184D1051, and EFs11496, respectively. Bactericidal activity, defined as a ≥3 log10CFU/g reduction from the initial colony count, was demonstrated against all three isolates with all doses of daptomycin; however, bactericidal activity was not sustained with the daptomycin 6- and 8-mg/kg/day regimens. Linezolid was bacteriostatic against EFm11499 and displayed no appreciable activity against 09-184D1051 or EFs11496. Concentration-dependent killing was displayed with more sustained reduction in colony count (3.58 to 6.46 and 5.89 to 6.56 log10CFU/g) at 96 h for the simulated regimen of daptomycin at doses of 10 and 12 mg/kg/day, respectively (P≤ 0.012). NoE. faeciummutants with reduced susceptibility were recovered at any dosage regimen; however, theE. faecalisstrain developed reduced daptomycin susceptibility with daptomycin at 6, 8, and 10 but not at 12 mg/kg/day. Daptomycin displayed a dose-dependent response against three VRE isolates, with high-dose daptomycin producing sustained bactericidal activity. Further research is warranted.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Adam Belley ◽  
Francis F. Arhin ◽  
Greg Moeck

ABSTRACT The clinical development of nonsusceptibility to the lipopeptide antibiotic daptomycin remains a serious concern during therapy for infections caused by vancomycin-resistant Enterococcus faecium (VREfm). The long-acting lipoglycopeptide oritavancin exhibits potent in vitro activity against VREfm, although its safety and efficacy for treating clinical VREfm infections have not been established. In this study, novel dosing regimens of daptomycin and oritavancin were assessed against both VREfm and daptomycin-nonsusceptible VREfm isolates in an in vitro pharmacokinetic/pharmacodynamic model.


2016 ◽  
Vol 60 (5) ◽  
pp. 3178-3182 ◽  
Author(s):  
Megan K. Luther ◽  
Louis B. Rice ◽  
Kerry L. LaPlante

ABSTRACTAmpicillin-ceftriaxone combination therapy has become a predominant treatment for seriousEnterococcus faecalisinfections, such as endocarditis. Unfortunately, ceftriaxone use is associated with future vancomycin-resistant enterococcus colonization. We evaluatedE. faecalisin anin vitropharmacodynamic model against simulated human concentration-time profiles of ampicillin plus ceftaroline, cefepime, ceftriaxone, or gentamicin. Ampicillin-cefepime and ampicillin-ceftaroline demonstrated activities similar to those of ampicillin-ceftriaxone againstE. faecalis.


2015 ◽  
Vol 59 (5) ◽  
pp. 2842-2848 ◽  
Author(s):  
Jordan R. Smith ◽  
Katie E. Barber ◽  
Animesh Raut ◽  
Michael J. Rybak

ABSTRACTEnterococcus faecalisandEnterococcus faeciumare frequently resistant to vancomycin and β-lactams. In enterococcal infections with reduced glycopeptide susceptibility, combination therapy is often administered. Our objective was to conduct pharmacokinetic/pharmacodynamic (PK/PD) models to evaluate β-lactam synergy with daptomycin (DAP) against resistant enterococci. OneE. faecalisstrain (R6981) and twoE. faeciumstrains (R6370 and 8019) were evaluated. DAP MICs were obtained. All strains were evaluated for response to LL37, an antimicrobial peptide, in the presence and absence of ceftaroline (CPT), ertapenem (ERT), and ampicillin (AMP). After 96 h,in vitromodels were run simulating 10 mg DAP/kg body weight/day, 600 mg CPT every 8 h (q8h), 2 g AMP q4h, and 1 g ERT q24h, both alone and in combination against all strains. DAP MICs were 2, 4, and 4 μg/ml for strains R6981, R6370, and 8019, respectively. PK/PD models demonstrated bactericidal activity with DAP-CPT, DAP-AMP, and DAP-ERT combinations against strain 8019 (P< 0.001 and log10CFU/ml reduction of >2 compared to any single agent). Against strains R6981 and R6370, the DAP-AMP combination demonstrated enhancement against R6370 but not R6981, while the combinations of DAP-CPT and DAP-ERT were bactericidal, demonstrated enhancement, and were statistically superior to all other regimens at 96 h (P< 0.001) against both strains. CPT, ERT, and AMP similarly augmented LL37 killing against strain 8019. In strains R6981 and R6370, CPT and ERT aided LL37 more than AMP (P< 0.001). Compared to DAP alone, combination regimens provide better killing and prevent resistance. Clinical research involving DAP combinations is warranted.


2013 ◽  
Vol 58 (2) ◽  
pp. 672-677 ◽  
Author(s):  
Amira A. Bhalodi ◽  
Mao Hagihara ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACTThe effects of prior vancomycin exposure on ceftaroline and daptomycin therapy against methicillin-resistantStaphylococcus aureus(MRSA) have not been widely studied. Humanized free-drug exposures of vancomycin at 1 g every 12 h (q12h), ceftaroline at 600 mg q12h, and daptomycin at 10 mg/kg of body weight q24h were simulated in a 96-hin vitropharmacodynamic model against three MRSA isolates, including one heteroresistant vancomycin-intermediateS. aureus(hVISA) isolate and one VISA isolate. A total of five regimens were tested: vancomycin, ceftaroline, and daptomycin alone for the entire 96 h, and then sequential therapy with vancomycin for 48 h followed by ceftaroline or daptomycin for 48 h. Microbiological responses were measured by the changes in log10CFU during 96 h from baseline. Control isolates grew to 9.16 ± 0.32, 9.13 ± 0.14, and 8.69 ± 0.28 log10CFU for MRSA, hVISA, and VISA, respectively. Vancomycin initially achieved ≥3 log10CFU reductions against the MRSA and hVISA isolates, followed by regrowth beginning at 48 h; minimal activity was observed against VISA. The change in 96-h log10CFU was largest for sequential therapy with vancomycin followed by ceftaroline (−5.22 ± 1.2,P= 0.010 versus ceftaroline) and for sequential therapy with vancomycin followed by ceftaroline (−3.60 ± 0.6,P= 0.037 versus daptomycin), compared with daptomycin (−2.24 ± 1.0), vancomycin (−1.40 ± 1.8), and sequential therapy with vancomycin followed by daptomycin (−1.32 ± 1.0,P> 0.5 for the last three regimens). Prior exposure of vancomycin at 1 g q12h reduced the initial microbiological response of daptomycin, particularly for hVISA and VISA isolates, but did not affect the response of ceftaroline. In the scenario of poor vancomycin response for high-inoculum MRSA infection, a ceftaroline-containing regimen may be preferred.


2009 ◽  
Vol 54 (2) ◽  
pp. 804-810 ◽  
Author(s):  
Catharine C. Bulik ◽  
Henry Christensen ◽  
Peng Li ◽  
Christina A. Sutherland ◽  
David P. Nicolau ◽  
...  

ABSTRACT We have previously demonstrated that a high-dose, prolonged-infusion meropenem regimen (2 g every 8 h [q8h]; 3-hour infusion) can achieve 40% free drug concentration above the MIC against Pseudomonas aeruginosa with MICs of ≤16 μg/ml. The objective of this experiment was to compare the efficacy of this high-dose, prolonged-infusion regimen against carbapenemase-producing Klebsiella pneumoniae isolates with the efficacy against P. aeruginosa isolates having similar meropenem MICs. An in vitro pharmacodynamic model was used to simulate human serum concentrations. Eleven genotypically confirmed K. pneumoniae carbapenemase (KPC)-producing isolates and six clinical P. aeruginosa isolates were tested for 24 h, and time-kill curves were constructed. High-performance liquid chromatography (HPLC) was used to verify meropenem concentrations in each experiment. Meropenem achieved a rapid ≥3 log CFU reduction against all KPC isolates within 6 h, followed by regrowth in all but two isolates. The targeted %fT>MIC (percent time that free drug concentrations remain above the MIC) exposure was achieved against both of these KPC isolates (100% fT>MIC versus MIC = 2 μg/ml, 75% fT>MIC versus MIC = 8 μg/ml). Against KPC isolates with MICs of 8 and 16 μg/ml that did regrow, actual meropenem exposures were significantly lower than targeted due to rapid in vitro hydrolysis, whereby targeted %fT>MIC was reduced with each subsequent dosing. In contrast, a ≥3 log CFU reduction was maintained over 24 h for all Pseudomonas isolates with meropenem MICs of 8 and 16 μg/ml. Although KPC and P. aeruginosa isolates may share similar meropenem MICs, the differing resistance mechanisms produce discordant responses to a high-dose, prolonged infusion of meropenem. Thus, predicting the efficacy of an antimicrobial regimen based on MIC may not be a valid assumption for KPC-producing organisms.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6000
Author(s):  
Ilias Muhammad ◽  
Melissa R. Jacob ◽  
Mohamed A. Ibrahim ◽  
Vijayasankar Raman ◽  
Mallika Kumarihamy ◽  
...  

Two new epimeric bibenzylated monoterpenes machaerifurogerol (1a) and 5-epi-machaerifurogerol (1b), and four known isoflavonoids (+)-vestitol (2), 7-O-methylvestitol (3), (+)-medicarpin (4), and 3,8-dihydroxy-9-methoxypterocarpan (5) were isolated from Machaerium Pers. This plant was previously assigned as Machaerium multiflorum Spruce, from which machaeriols A-D (6–9) and machaeridiols A-C (10–12) were reported, and all were then re-isolated, except the minor compound 9, for a comprehensive antimicrobial activity evaluation. Structures of the isolated compounds were determined by full NMR and mass spectroscopic data. Among the isolated compounds, the mixture 10 + 11 was the most active with an MIC value of 1.25 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) strains BAA 1696, −1708, −1717, −33591, and vancomycin-resistant Enterococcus faecium (VRE 700221) and E. faecalis (VRE 51299) and vancomycin-sensitive E. faecalis (VSE 29212). Compounds 6–8 and 10–12 were found to be more potent against MRSA 1708, and 6, 11, and 12 against VRE 700221, than the drug control ciprofloxacin and vancomycin. A combination study using an in vitro Checkerboard method was carried out for machaeriols (7 or 8) and machaeridiols (11 or 12), which exhibited a strong synergistic activity of 12 + 8 (MIC 0.156 and 0.625 µg/mL), with >32- and >8-fold reduction of MIC’s, compared to 12, against MRSA 1708 and −1717, respectively. In the presence of sub-inhibitory concentrations on polymyxin B nonapeptide (PMBN), compounds 10 + 11, 11, 12, and 8 showed activity in the range of 0.5–8 µg/mL for two strains of Acinetobacter baumannii, 2–16 µg/mL against Pseudomonas aeruginosa PAO1, and 2 µg/mL against Escherichia coli NCTC 12923, but were inactive (MIC > 64 µg/mL) against the two isolates of Klebsiella pneumoniae.


Sign in / Sign up

Export Citation Format

Share Document