scholarly journals Single-Dose Pharmacokinetics of a Pleconaril (VP63843) Oral Solution in Children and Adolescents

1999 ◽  
Vol 43 (3) ◽  
pp. 634-638 ◽  
Author(s):  
Gregory L. Kearns ◽  
Susan M. Abdel-Rahman ◽  
Laura P. James ◽  
Douglas L. Blowey ◽  
James D. Marshall ◽  
...  

ABSTRACT Pleconaril is an orally active, broad-spectrum antipicornaviral agent which demonstrates excellent penetration into the central nervous system, liver, and nasal epithelium. In view of the potential pediatric use of pleconaril, we conducted a single-dose, open-label study to characterize the pharmacokinetics of this antiviral agent in pediatric patients. Following an 8- to 10-h period of fasting, 18 children ranging in age from 2 to 12 years (7.5 ± 3.1 years) received a single 5-mg/kg of body weight oral dose of pleconaril solution administered with a breakfast of age-appropriate composition. Repeated blood samples (n = 10) were obtained over 24 h postdose, and pleconaril was quantified from plasma by gas chromatography. Plasma drug concentration-time data for each subject were fitted to the curve by using a nonlinear, weighted (weight = 1/Y calc) least-squares algorithm, and model-dependent pharmacokinetic parameters were determined from the polyexponential parameter estimates. Pleconaril was well tolerated by all subjects. A one-compartment open-model with first-order absorption best described the plasma pleconaril concentration-time profile in 13 of the subjects over a 24-h postdose period. Pleconaril pharmacokinetic parameters (means ± standard deviations) for these 13 patients were as follows. The maximum concentration of the drug in serum (C max) was 1,272.5 ± 622.1 ng/ml. The time to C max was 4.1 ± 1.5 h, and the lag time was 0.75 ± 0.56 h. The apparent absorption rate constant was 0.75 ± 0.48 1/h, and the elimination rate constant was 0.16 ± 0.07 1/h. The area under the concentration-time curve from 0 to 24 h was 8,131.15 ± 3,411.82 ng · h/ml. The apparent total plasma clearance was 0.81 ± 0.86 liters/h/kg, and the apparent steady-state volume of distribution was 4.68 ± 2.02 liters/kg. The mean elimination half-life of pleconaril was 5.7 h. The mean plasma pleconaril concentrations at both 12 h (250.4 ± 148.2 ng/ml) and 24 h (137.9 ± 92.2 ng/ml) after the single 5-mg/kg oral dose in children were higher than that from in vitro studies reported to inhibit >90% of nonpolio enterovirus serotypes (i.e., 70 ng/ml). Thus, our data support the evaluation of a 5-mg/kg twice-daily oral dose of pleconaril for therapeutic trials in pediatric patients with enteroviral infections.

Author(s):  
NEELAM SINGH ◽  
Giriraj T Kulkarni ◽  
Yatendra Kumar ◽  
GIRIRAJ T KULKARNI

Objective: Pharmacokinetic evaluation of montelukast sodium chronomodulated capsules (sustained-release solid dispersion of drug enclosed in pH-sensitive film-coated hard gelatin shell) and marketed tablets has been carried out in this study. Methods: A single oral dose of prepared capsules and marketed conventional tablets was administered in healthy male Dunkin-Hartley albino guinea pigs. Blood samples were collected at different time intervals and plasma concentration of drug was determined by reversed-phase high-performance liquid chromatography. Different pharmacokinetic parameters were assessed from plasma drug concentration-time profile by one-compartment model, first-order kinetics. Results: Pharmacokinetic parameters such as time to reach maximum concentration, elimination rate constant, elimination half-life, and mean residence time data indicates that drug release from chronomodulated capsules is significantly prolonged with initial release lag time of 3.5–4 h in comparison with marketed conventional tablets. However, maximum drug plasma concentration, area under the concentration-time curve, and apparent volume of distribution values show non-significant difference between capsules and marketed tablets. Conclusion: The findings specified that capsules were providing time controlled delivery of drug at a desired rate for prolonged time, which may be helpful for the prevention of episodic attack of asthma in early morning hours.


2002 ◽  
Vol 2 ◽  
pp. 1369-1378 ◽  
Author(s):  
Tom B. Vree ◽  
Eric Dammers ◽  
Eri van Duuren

The aims of this investigation were to calculate the pharmacokinetic parameters and to identify parameters, based on individual plasma concentration-time curves of amoxicillin and clavulanic acid in cats, that may govern the observed differences in absorption of both drugs. The evaluation was based on the data from plasma concentration-time curves obtained following a single-dose, open, randomised, two-way crossover phase-I study, each involving 24 female cats treated with two Amoxi-Clav formulations (formulation A was Clavubactin® and formulation was B Synulox® ; 80/20 mg, 24 animals, 48 drug administrations). Plasma amoxicillin and clavulanic acid concentrations were determined using validated bioassay methods. The half-life of elimination of amoxicillin is 1.2 h (t1/2= 1.24 ± 0.28 h, Cmax= 12.8 ± 2.12 μg/ml), and that of clavulanic acid 0.6 h (t1/2= 0.63 ± 0.16 h, Cmax= 4.60 ± 1.68 μg/ml). There is a ninefold variation in the AUCtof clavulanic acid for both formulations, while the AUCtof amoxicillin varies by a factor of two. The highest clavulanic acid AUCtvalues indicate the best absorption; all other data indicate less absorption. Taking into account that the amoxicillin–to–clavulanic acid dose ratio in the two products tested was 4:1, the blood concentration ratios may actually vary much more, apparently without compromising the products’ high efficacy against susceptible microorganisms.


2012 ◽  
Vol 51 (05) ◽  
pp. 383-394 ◽  
Author(s):  
M. Fukumoto ◽  
L. Bax ◽  
A. Kohno ◽  
Y. Morishita ◽  
H. Tsuruta

SummaryBackground: Over 100 limited sampling strategies (LSSs) have been proposed to reduce the number of blood samples necessary to estimate the area under the concentration-time curve (AUC). The conditions under which these strategies succeed or fail remain to be clarified.Objectives: We investigated the accuracy of existing LSSs both theoretically and numerically by Monte Carlo simulation. We also proposed two new methods for more accurate AUC estimations.Methods: We evaluated the following existing methods theoretically: i) nonlinear curve fitting algorithm (NLF), ii) the trapezium rule with exponential curve approximation (TZE), and iii) multiple linear regression (MLR). Taking busulfan (BU) as a test drug, we generated a set of theoretical concentration-time curves based on the identified distribution of pharmacokinetic parameters of BU and re-evaluated the existing LSSs using these virtual validation profiles. Based on the evaluation results, we improved the TZE so that unrealistic parameter values were not used. We also proposed a new estimation method in which the most likely curve was selected from a set of pre-generated theoretical concentration-time curves.Results: Our evaluation, based on clinical profiles and a virtual validation set, revealed: i) NLF sometimes overestimated the absorption rate constant Ka, ii) TZE overestimated AUC over 280% when Ka is small, and iii) MLR underestimated AUC over 30% when the elimination rate constant Ke is small. These results were consistent with our mathematical evaluations for these methods. In contrast, our two new methods had little bias and good precision.Conclusions: Our investigation revealed that existing LSSs induce different but specific biases in the estimation of AUC. Our two new LSSs, a modified TZE and one using model concentration-time curves, provided accurate and precise estimations of AUC.


1999 ◽  
Vol 19 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Harold J. Manley ◽  
George R. Bailie ◽  
Rupesh D. Asher ◽  
George Eisele ◽  
Reginald F. Frye

Objective To investigate the pharmacokinetic parameters of intermittent intraperitoneal (IP) cefazolin, and recommend a cefazolin dosing regimen in continuous ambulatory peritoneal dialysis (CAPD) patients. Design Prospective nonrandomized open study. Setting CAPD outpatient clinic in Albany, New York. Patients Seven volunteer CAPD patients without peritonitis. Three of the patients were nonanuric while 4 were anuric. Interventions Cefazolin (15 mg/kg total body weight) was given to each patient during the first peritoneal exchange. Blood and dialysate samples were collected at times 0, 0.5, 1, 2, 3, 6 (end of the first antibiotic-containing dwell), 24, and 48 hours after the administration of IP cefazolin. Urine samples were collected in nonanuric patients over the study period. Results The mean ± SD amount of cefazolin dose absorbed from the dialysate after the 6-hour dwell was 69.7% ± 8.0% of the administered dose. The cefazolin absorption rate constant from dialysate to serum was 0.21 ± 0.1 /hr (absorption half-life 3.5 ± 0.8 hr). The mean serum concentrations reached at 24 and 48 hours were 52.4 ± 3.7 mg/L and 30.3 ± 5.9 mg/L, respectively. The mean dialysate cefazolin concentrations reached at 24 and 48 hours were 15.1 ± 3.4 mg/L and 7.9 ± 1.4 mg/L, respectively. The cefazolin serum elimination rate constant was 0.02 ± 0.01 /hr (elimination half-life 31.5 ± 8.8 hr). The total cefazolin body clearance was 3.4 ± 0.6 mL/min. In the 3 nonanuric patients the mean renal clearance of cefazolin was 0.6 ± 0.4 mL/min. The peritoneal clearance of cefazolin was 1.0 ± 0.3 mL/min. The systemic volume of distribution of cefazolin was 0.2 ± 0.05 L/kg. No statistical difference was detected in pharmacokinetic parameters between anuric and nonanuric patients, although this may be due to the small number of patients in each group. Conclusion A single daily dose of cefazolin dosed at 15 mg/kg actual body weight in CAPD patients is effective in achieving serum concentration levels greater than the minimum inhibitory concentration for sensitive organisms over 48 hours, and dialysate concentration levels over 24 hours. Caution is warranted in extrapolation of dosing recommendations to patients who maintain a significant degree of residual renal function.


Author(s):  
Niora J Fabian ◽  
David E Moody ◽  
Olga Averin ◽  
Wenfang B Fang ◽  
Morgan Jamiel ◽  
...  

Although buprenorphine is the most frequently used opioid analgesic in common marmosets (Callithrix jacchus), thereis limited information in the literature supporting current dosing regimens used for this species. The purpose of this study was to determine the pharmacokinetic profiles of single-dose buprenorphine HCl administered intramuscularly (IM) at 0.01 mg/kg in 6 adult marmosets (1.8 to 12.8 y old; 2 males, 4 females) and subcutaneously (SQ) at 0.01 mg/kg in 6 adult marmosets(2.3-4.4 y old; 3 males, 3 females) by mass spectrometry. Blood was collected at multiple time points from 0.25 to 24 h from unsedated animals following a hybrid sparse-serial sampling design. The maximal observed plasma concentration of buprenorphine (Cmax) administered IM (2.57 ± 0.95 ng/mL) was significantly higher than administered SQ (1.47 ± 0.61 ng/mL). However, the time to Cmax (Tmax) was not statistically different between routes (17.4 ± 6 min for IM and 19.8 ±7.8 min for SQ). The time of the last quantifiable concentration of buprenorphine was 5 ± 1.67 h for IM compared with 6.33 ± 1.51 h for SQ, which was not statistically different. The mean buprenorphine plasma concentration-time curves were used to propose a dosing frequency of 4 to 6 h for buprenorphine at 0.01 mg/kg IM or SQ based on a theoretical therapeutic plasma concentration threshold of 0.1 ng/mL. Based on the mean pharmacokinetic parameters and plasma-concentration time curves, both IM and SQ routes of buprenorphine at this dose provide a rapid increase in the plasma concentration of buprenorphine above the therapeutic threshold, and may be more effective for acute rather than long-lasting analgesia. Further studies are neededto examine repeated dosing regimens and the efficacy of buprenorphine in common marmosets.


1994 ◽  
Vol 28 (4) ◽  
pp. 444-446
Author(s):  
Lawrence V. Friedrich ◽  
Roger L. White ◽  
Michael B. Kays ◽  
David S. Burgess

OBJECTIVE: To assess the impact of degradation of aztreonam, a beta-lactam antibiotic, during HPLC analysis on pharmacokinetic parameter estimates. METHODS: The baseline (B) serum concentration-time data from a published pharmacokinetic study of aztreonam were degraded using first-order equations and a degradation rate constant (0.014 h-1) determined from a preliminary degradation study. Samples were mathematically degraded for autosampler run times of 8–13 h (D1) to approximate a normal work day and for autosampler run times of 16–17 h (D2) and compared with B data. It was assumed that B data were nondegraded and that changes in chromatography were the result of degradation of azetreonam and not to any changes in chromatographic conditions. A two-compartment model was used to fit the data and pharmacokinetic parameters were calculated using standard equations. Statistical significance between all pharmacokinetic parameters for B and D1 and B and D2 was determined using the paired, two-tailed Student's t-test. RESULTS: Increased variability was noted for all pharmacokinetic parameters for D1 and D2 compared with B. Statistically significant differences were found for clearance (B <D1, p=0.0095 and B <D2, p=0.0194), steady-state volume of distribution (B <D2, p=0.0392), and area under the serum concentration-time curve (B >D1, p=0.0497). CONCLUSIONS: Aztreonam degradation resulted in increased variability in pharmacokinetic parameter estimates. Investigators should be cognizant of this and preliminary studies should be performed to characterize degradation for the length of the expected autosampler run.


DICP ◽  
1989 ◽  
Vol 23 (5) ◽  
pp. 375-378
Author(s):  
Bruce H. Ackerman ◽  
Keith M. Olsen ◽  
Eleanor E. Kennedy ◽  
E. Howard Taylor ◽  
Bai H. Chen ◽  
...  

The formation rate constant and elimination rate constant for 3-hydroxyquinidine were determined in eight patients with ventricular tachycardia. These two parameters (mean ± SD) were found to be 0.784 ± 0.202 and 0.042 ± 0.058 h−1, respectively. Coefficients of determination for the computer-generated line of best fit for serum concentration-time data were 0.986 ± 0.008. Patients received two infusions of quinidine gluconate 5 mg/kg over 30 minutes separated by a 20–30 minute electrophysiologic testing period. Unbound and total 3-hydroxyquinidine concentrations were also determined. Among the eight patients, 3-hydroxyquinidine was 61.9 percent bound. Studies in healthy volunteers had shown 50 percent binding. Linear regression of unbound and total 3-hydroxyquinidine was described by the equation Y = 0.3814X–1.448, r = 0.813. Although half-lives of 3.5–12.4 hours had been reported in healthy volunteers, prolonged half-lives were observed in all but two of our arrhythmia patients.


2015 ◽  
Vol 59 (7) ◽  
pp. 4173-4180 ◽  
Author(s):  
Michael L. Schmitz ◽  
Jeffrey L. Blumer ◽  
Wes Cetnarowski ◽  
Christopher M. Rubino

ABSTRACTDespite over 40 years of worldwide usage, relatively few data have been published on the pharmacokinetics of cefazolin in pediatric surgical patients. The primary objectives of this study were to examine the pharmacokinetics and safety of cefazolin in children 10 to 12 years of age (inclusive) receiving 1 or 2 g of cefazolin, based on body weight. This multiple-center, open-label study enrolled pediatric patients electively scheduled for surgical procedures who required cefazolin as part of their routine clinical management. Patients weighing ≥25 to <50 kg received a 1-g dose, and patients weighing ≥50 to ≤85 kg received a 2-g dose. Postdose pharmacokinetic and safety assessments were conducted following drug administration. Cefazolin concentration-time data were analyzed by using both noncompartmental and population pharmacokinetics methods. Monte Carlo simulations were performed to identify appropriate weight-based cutoffs for the dosing of children aged 10 to 17 years of age. Twelve patients were enrolled in this study and provided the requisite pharmacokinetic data. In general, cefazolin was well tolerated. The mean cefazolin terminal elimination half-life, clearance, and area under the concentration-time curve from time zero to infinity in this population were 1.95 h, 0.804 ml/min/kg, and 607 mg · h/liter, respectively. Patients weighing 50 to 60 kg exhibited elevated cefazolin exposures. Observed pharmacokinetic parameters and simulation results indicated that a weight-based cutoff of 60 kg is predicted to provide cefazolin exposure consistent with that observed in normal, healthy adults at recommended doses for surgical prophylaxis. (This study has been registered at ClinicalTrials.gov under registration no. NCT01904357.)


2007 ◽  
Vol 52 (3) ◽  
pp. 852-857 ◽  
Author(s):  
Charles A. Peloquin ◽  
David Jamil Hadad ◽  
Lucilia Pereira Dutra Molino ◽  
Moises Palaci ◽  
W. Henry Boom ◽  
...  

ABSTRACT The objective of this study was to determine the population pharmacokinetic parameters of levofloxacin, gatifloxacin, and moxifloxacin following multiple oral doses. Twenty-nine patients with tuberculosis at the University Hospital in Vitória, Brazil, participated. Subjects received multiple doses of one drug (levofloxacin, 1,000 mg daily, or gatifloxacin or moxifloxacin, 400 mg daily) as part of a 7-day study of early bactericidal activity. Serum samples were collected over 24 h after the fifth dose and assayed using validated high-performance liquid chromatography assays. Concentration-time data were analyzed using noncompartmental, compartmental, and population methods. The three drugs were well tolerated. Levofloxacin produced the highest maximum plasma concentrations (median, 15.55 μg/ml; gatifloxacin, 4.75 μg/ml; moxifloxacin, 6.13 μg/ml), largest volume of distribution (median, 81 liters; gatifloxacin, 79 liters; moxifloxacin, 63 liters), and longest elimination half-life (median, 7.4 h; gatifloxacin, 5.0 h; moxifloxacin, 6.5 h). A one-compartment model, with or without weight as a covariate, adequately described the data. Postmodeling simulations using median population parameter estimates closely approximated the median values from the original data. Area under the concentration-time curve/MIC ratios for free drug were high. All three quinolones showed favorable pharmacokinetic and pharmacodynamic indices, with the most favorable results in this population being seen with levofloxacin at the comparative doses used.


2020 ◽  
Author(s):  
Fei Qin ◽  
Gan-Mi Wang ◽  
Jin-Ying Huang ◽  
Jia-Rong Wu ◽  
Wen-Jie Song ◽  
...  

Abstract BackgroundCiprofloxacin is a broad-spectrum fluoroquinolone antibiotic which is active against a wide range of Gram-positive and Gram-negative bacteria. The study mainly aimed to determine the bioequivalence of two branded ciprofloxacin hydrochloride tablets (250 mg) under the fasting and fed conditions.MethodsThe study was carried out in 48 healthy Chinese subjects under fasting and fed conditions with a randomized, open-label, two-formulation, two-sequence, two-period, single-dose crossover design. In each period of the study, the subjects were assigned to receive a single oral dose of 250 mg of ciprofloxacin hydrochloride. Blood samples were collected from an hour before dosing to 36 h after administration with 16 time points in total. The bioequivalence analysis was performed after ln-transformation of the ciprofloxacin pharmacokinetic parameters including maximum concentration (Cmax), area under the plasma concentration–time curve from time 0 to time t (AUC0-t), area under the plasma concentration-time curve from time 0 to infinity (AUC0-∞). Two formulations are considered bioequivalent if the 90% confidence intervals (CIs) for the test/reference geometric mean ratios (GMRs) for the ln-transformed pharmacokinetic parameters fall within the standard acceptance range of 80% – 125%. ResultsIn total of 48 subjects were enrolled in the fasting and fed studies, and one of the subjects was excluded before the administration. In the fasting study, the 90% CIs for the test/reference GMRs of the ln-transformed data for Cmax, AUC0–t, and AUC0–∞ were 85.41% to 100.97%, 95.40% to 100.27%, and 95.48% to 100.30%, respectively. For the fed study, the 90% CIs for the test/reference GMRs of the ln-transformed data for Cmax, AUC0–t, and AUC0–∞ were 90.15% to 113.75%, 99.10% to 103.77% and 99.11% to 103.80%, respectively. A total of 8 of 47 subjects experienced AEs in the fasting and fed studies.ConclusionsIn the study, the generic (test) product of ciprofloxacin hydrochloride 250 mg was bioequivalent to the innovator (reference) product after a single oral dose administration under the fasting and fed conditions. Both two brands of ciprofloxacin tablets were safe and well tolerated.Trial registrationThe clinical trial was registered at Center for the Drug Evaluation of the National Medical Products Administration (registration number: CTR20171152; date of registration:September 25, 2017; http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml).


Sign in / Sign up

Export Citation Format

Share Document