scholarly journals Mutations in Plasmodium falciparumCytochrome b That Are Associated with Atovaquone Resistance Are Located at a Putative Drug-Binding Site

2000 ◽  
Vol 44 (8) ◽  
pp. 2100-2108 ◽  
Author(s):  
Michael Korsinczky ◽  
Nanhua Chen ◽  
Barbara Kotecka ◽  
Allan Saul ◽  
Karl Rieckmann ◽  
...  

ABSTRACT Atovaquone is the major active component of the new antimalarial drug Malarone. Considerable evidence suggests that malaria parasites become resistant to atovaquone quickly if atovaquone is used as a sole agent. The mechanism by which the parasite develops resistance to atovaquone is not yet fully understood. Atovaquone has been shown to inhibit the cytochrome bc 1 (CYTbc 1) complex of the electron transport chain of malaria parasites. Here we report point mutations in Plasmodium falciparum CYT b that are associated with atovaquone resistance. Single or double amino acid mutations were detected from parasites that originated from a cloned line and survived various concentrations of atovaquone in vitro. A single amino acid mutation was detected in parasites isolated from a recrudescent patient following atovaquone treatment. These mutations are associated with a 25- to 9,354-fold range reduction in parasite susceptibility to atovaquone. Molecular modeling showed that amino acid mutations associated with atovaquone resistance are clustered around a putative atovaquone-binding site. Mutations in these positions are consistent with a reduced binding affinity of atovaquone for malaria parasite CYTb.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1793-C1793
Author(s):  
Paul Rowland ◽  
Onkar SINGH ◽  
Leila Ross ◽  
Francisco Gamo ◽  
Maria Lafuente-Monasterio ◽  
...  

Malaria is a preventable and treatable disease, yet annually there are still hundreds of thousands of malaria-related deaths. The disease is caused by infection with mosquito-borne Plasmodium parasites. With hundreds of millions of cases each year there is a very high potential for drug resistance and this has compromised many existing therapies. One target under investigation is the enzyme dihydroorotate dehydrogenase (DHODH) which catalyses the rate-limiting step of pyrimidine biosynthesis and is an essential enzyme in the malaria parasite. There are currently several Plasmodium-selective DHODH inhibitors under development. To investigate the potential for drug resistance against DHODH inhibitors in vitro resistance selections were carried out using known inhibitors from different structural classes [1]. These studies identified point mutations in the drug binding site which lead to reduced sensitivity to the inhibitors, and in some cases increased sensitivity to a different inhibitor, suggesting a novel combination therapy approach to combat resistance. To help understand the significance of the inhibitor binding site mutations we determined the crystal structures of P. falciparum DHODH in complex with the inhibitors Genz-669178, IDI-6253 and IDI-6273. Co-crystallisation experiments led to a new crystal form in each case. Here we describe the crystal structures, the binding modes of the inhibitors and the great flexibility of the binding site, which is able to adjust to accommodate different inhibitor series. The structural role of the resistance mutations is also discussed.


2014 ◽  
Vol 95 (5) ◽  
pp. 1033-1042 ◽  
Author(s):  
Blanca García-Barreno ◽  
Teresa Delgado ◽  
Sonia Benito ◽  
Inmaculada Casas ◽  
Francisco Pozo ◽  
...  

Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih et al., Proc Natl Acad Sci USA, 104 , 6283–6288, 2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected in vitro with one of the mAbs, which contained instead nearby single amino acid changes in the HA head. Thus, either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover, this site is relevant for the human antibody response, as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.


2001 ◽  
Vol 45 (3) ◽  
pp. 734-738 ◽  
Author(s):  
Tiffany R. Shultz ◽  
John W. Tapsall ◽  
Peter A. White

ABSTRACT The in vitro activities of ciprofloxacin, trovafloxacin, moxifloxacin, and grepafloxacin against 174 strains of Neisseria gonorrhoeae isolated in Sydney, Australia, were determined. The strains included 84 quinolone-less-sensitive and -resistant N. gonorrhoeae (QRNG) strains for which ciprofloxacin MICs were in the range of 0.12 to 16 μg/ml. The QRNG included strains isolated from patients whose infections were acquired in a number of countries, mostly in Southeast Asia. The gyrA and parCquinolone resistance-determining regions (QRDR) of 18 selected QRNG strains were sequenced, and the amino acid mutations observed were related to the MICs obtained. The activities of moxifloxacin and grepafloxacin against QRNG were comparable to that of ciprofloxacin. Trovafloxacin was more active than the other quinolones against some but not all of the QRNG strains. Increments in ciprofloxacin resistance occurred in a step-wise manner with point mutations initiated ingyrA resulting in amino acid alterations Ser91-to-Phe, Ser91-to-Tyr, Asp95-to-Gly, and Asp95-to-Asn. Single gyrAchanges correlated with ciprofloxacin MICs in the range 0.12 to 1 μg/ml. The Ser91 changes in GyrA were associated with higher MICs and further QRDR changes. QRNG strains for which ciprofloxacin MICs were greater than 1 μg/ml had both gyrA and parCQRDR point mutations. ParC alterations were seen in these isolates only in the presence of GyrA changes and comprised amino acid changes Asp86-to-Asn, Ser87-to-Asn, Ser87-to-Arg, Ser88-to-Pro, Glu91-to-Lys, and Glu91-to-Gln. QRNG strains for which MICs were in the higher ranges had double GyrA mutations, but again only with accompanying ParC alterations. Not only did the nature and combination of GyrA and ParC changes influence the incremental increases in ciprofloxacin MICs, but they seemingly also altered the differential activity of trovafloxacin. Our findings suggest that the newer quinolones of the type examined are unlikely to be useful replacements for ciprofloxacin in the treatment of gonorrhea, particularly where ciprofloxacin MICs are high or where resistance is widespread.


2020 ◽  
Author(s):  
Mohamed Fadlalla

<p>SARS CoV 2 has spread worldwide and caused a major outbreak of coronavirus disease 2019 (COVID-19). To date, no licensed drug or a vaccine is available against COVID19.</p><p>Starting from all of the resolved SARS CoV2 crystal structures, this study aims to find inhibitors for all of the SARS CoV2 proteins. To achieve this, I used PocketMatch to test the similarity of approved drugs binding sites against all of the binding sites found on SARS CoV 2 proteins. After that docking was used to confirm the results.</p><p>I found drugs that inhibit the main protease, Nsp12 and Nsp3. The discovered drugs are either in clinical trials (Sildenafil, Lopinavir, Ritonavir) or have in vitro antiviral activity (Nelfinavir, Indinavir, Amprenavir, depiqulinum , Gemcitabine, Raltitrexed, Aprepitant, montelukast, Ouabain, Raloxifene) whether against SARS CoV 2 or other viruses. In addition to this, further analysis of pockets revealed a steroidal pocket that might open the door to hypotheses on why the mortality of men is higher than women.</p><p>Many of the in silico repurposing studies test binding of the compound to the target using docking. The significance of this study adds to the similarity between the drug binding site and the target binding site. This takes into consideration the dynamic behaviour of the pocket after ligand binding.</p><div><br></div>


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Bahareh Attaran ◽  
Najmeh Salehi ◽  
Bahareh Ghadiri ◽  
Maryam Esmaeili ◽  
Shadi Kalateh ◽  
...  

Abstract Background Amoxicillin-resistant H. pylori strains are increasing worldwide. To explore the potential resistance mechanisms involved, the 3D structure modeling and access tunnel prediction for penicillin-binding proteins (PBP1A) was performed, based on the Streptococcus pneumoniae, PBP 3D structure. Molecular covalent docking was used to determine the interactions between amoxicillin (AMX) and PBP1A. Results The AMX-Ser368 covalent complex interacts with the binding site residues (Gly367, Ala369, ILE370, Lys371, Tyr416, Ser433, Thr541, Thr556, Gly557, Thr558, and Asn560) of PBP1A, non-covalently. Six tunnel-like structures, accessing the PBP1A binding site, were characterized, using the CAVER algorithm. Tunnel-1 was the ultimate access route, leading to the drug catalytic binding residue (Ser368). This tunnel comprises of eighteen amino acid residues, 8 of which are shared with the drug binding site. Subsequently, to screen the presence of PBP1A mutations, in the binding site and tunnel residues, in our clinical strains, in vitro assays were performed. H. pylori strains, isolated under gastroscopy, underwent AMX susceptibility testing by E-test. Of the 100 clinical strains tested, 4 were AMX-resistant. The transpeptidase domain of the pbp1a gene of these resistant, plus 10 randomly selected AMX-susceptible strains, were amplified and sequenced. Of the amino acids lining the tunnel-1 and binding site residues, three (Ser414Arg, Val469Met and Thr556Ser) substitutions, were detected in 2 of the 4 resistant and none of the sequenced susceptible strains, respectively. Conclusions We hypothesize that mutations in amino acid residues lining the binding site and/or tunnel-1, resulting in conformational/spatial changes, may block drug binding to PBP1A and cause AMX resistance.


2021 ◽  
Author(s):  
Rubaiyea Farrukee ◽  
Vithiagaran Gunalan ◽  
Sebastian Maurer-Stroh ◽  
Patrick C Reading ◽  
Aeron C Hurt

Oseltamivir-resistant influenza viruses arise due to amino-acid mutations in key residues, but these changes often reduce their replicative and transmission fitness. Widespread oseltamivir-resistance has not yet been observed in A(H1N1)pdm09 viruses. However, it is known that permissive mutations in the neuraminidase (NA) of former seasonal A(H1N1) viruses from 2007-2009 buffered the detrimental effect of the NA H275Y mutation, resulting in fit oseltamivir-resistant viruses that circulated widely. This study explored two approaches to predict permissive mutations that may enable a fit H275Y A(H1N1)pdm09 variant to arise. A computational approach used phylogenetic and in silico protein stability analyses to predict potentially permissive mutations, which were then evaluated by in vitro NA enzyme activity and expression analysis, followed by in vitro replication. The second approach involved the generation of a virus library which encompassed all possible individual 2.9 x 104 codon mutations in the NA whilst keeping H275Y fixed. To select for variant viruses with the greatest fitness, the virus library was serially passaged in ferrets (via contact and aerosol transmission) and resultant viruses were deep sequenced. The computational approach predicted three NA permissive mutations, and even though they only offset the in vitro impact of H275Y on NA enzyme expression by 10%, they could restore replication fitness of the H275Y variant in A549 cells. In our experimental approach, a diverse virus library (97% of 8911 possible single amino-acid substitutions were sampled) was successfully transmitted through ferrets, and sequence analysis of resulting virus pools in nasal washes identified three mutations that improved virus transmissibility. Of these, one NA mutation, I188T, has been increasing in frequency since 2017 and is now present in 90% of all circulating A(H1N1)pdm09 viruses. Overall, this study provides valuable insights into the evolution of the influenza NA protein and identified several mutations that may potentially facilitate the emergence of a fit H275Y A(H1N1)pdm09 variant.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 611 ◽  
Author(s):  
Ortega ◽  
Vilhena ◽  
Zotti ◽  
Díez-Pérez ◽  
Cuevas ◽  
...  

In the growing field of biomolecular electronics, blue-copper Azurin stands out as one of the most widely studied protein in single-molecule contacts. Interestingly, despite the paramount importance of the structure/dynamics of molecular contacts in their transport properties, these factors remain largely unexplored from the theoretical point of view in the context of single Azurin junctions. Here we address this issue using all-atom Molecular Dynamics (MD) of Pseudomonas Aeruginosa Azurin adsorbed to a Au(111) substrate. In particular, we focus on the structure and dynamics of the free/adsorbed protein and how these properties are altered upon single-point mutations. The results revealed that wild-type Azurin adsorbs on Au(111) along two well defined configurations: one tethered via cysteine groups and the other via the hydrophobic pocket surrounding the Cu 2 + . Surprisingly, our simulations revealed that single amino-acid mutations gave rise to a quenching of protein vibrations ultimately resulting in its overall stiffening. Given the role of amino-acid vibrations and reorientation in the dehydration process at the protein-water-substrate interface, we suggest that this might have an effect on the adsorption process of the mutant, giving rise to new adsorption configurations.


1988 ◽  
Vol 8 (5) ◽  
pp. 1915-1922 ◽  
Author(s):  
D S Allison ◽  
E T Young

We used a genetic approach to identify point mutations in the signal sequence of a secreted eucaryotic protein, yeast alpha-factor. Signal sequence mutants were obtained by selecting for cells that partially mistargeted into mitochondria a fusion protein consisting of the alpha-factor signal sequence fused to the mature portion of an imported mitochondrial protein (Cox IV). The mutations resulted in replacement of a residue in the hydrophobic core of the signal sequence with either a hydrophilic amino acid or a proline. After reassembly into an intact alpha-factor gene, the substitutions were found to decrease up to 50-fold the rate of translocation of prepro-alpha-factor across microsomal membranes in vitro. Two of three mutants tested produced lower steady-state levels of alpha-factor in intact yeast cells, although the magnitude of the effect was less than that in the cell-free system.


2014 ◽  
Vol 289 (26) ◽  
pp. 17980-17995 ◽  
Author(s):  
Leila S. Ross ◽  
Francisco Javier Gamo ◽  
Maria José Lafuente-Monasterio ◽  
Onkar M. P. Singh ◽  
Paul Rowland ◽  
...  

2004 ◽  
Vol 823 ◽  
Author(s):  
Michael L. Paine ◽  
YaPing Lei ◽  
Wen Luo ◽  
Malcolm L. Snead

AbstractDental enamel is a unique composite bioceramic material that is the hardest tissue in the vertebrate body, containing long-, thin-crystallites of substituted hydroxyapatite. Enamel functions under immense loads in a bacterial-laden environment, and generally without catastrophic failure over a lifetime for the organism. Unlike all other biogenerated hard tissues of mesodermal origin, such as bone and dentin, enamel is produced by ectoderm-derived cells called ameloblasts. Recent investigations on the formation of enamel using cell and molecular approaches have been coupled to biomechanical investigations at the nanoscale and mesoscale levels. For amelogenin, the principle protein of forming enamel, two domains have been identified that are required for the proper assembly of multimeric units of amelogenin to form nanospheres. One domain is at the amino-terminus and the other domain in the carboxyl-terminal region. Amelogenin nanospheres are believed to influence the hydroxyapatite crystal habit. Both the yeast two-hybrid assay and surface plasmon resonance have been used to examine the assembly properties of engineered amelogenin proteins. Amelogenin protein was engineered using recombinant DNA techniques to contain deletions to either of the two self-assembly domains. Amelogenin protein was also engineered to contain single amino-acid mutations/substitutions in the amino-terminal self-assembly domain; and these amino-acid changes are based upon point mutations observed in humans affected with a hereditary disturbance of enamel formation. All of these alterations reveal significant defects in amelogenin self-assembly into nanospheres in vitro. Transgenic animals containing these same amelogenin deletions illustrate the importance of a physiologically correct bio-fabrication of the enamel protein extracellular matrix to allow for the organization of the enamel prismatic structure.


Sign in / Sign up

Export Citation Format

Share Document