scholarly journals Vancomycin Acts Synergistically with Gentamicin against Penicillin-Resistant Pneumococci by Increasing the Intracellular Penetration of Gentamicin

2003 ◽  
Vol 47 (1) ◽  
pp. 144-147 ◽  
Author(s):  
P. Cottagnoud ◽  
M. Cottagnoud ◽  
M. G. Täuber

ABSTRACT Vancomycin and gentamicin act synergistically against penicillin-resistant pneumococci in vitro and in experimental rabbit meningitis. The aim of the present study was to investigate the underlying mechanism of this synergism. The intracellular concentration of gentamicin was measured by using the following experimental setting. Bacterial cultures were incubated with either gentamicin alone or gentamicin plus vancomycin for a short period (15 min). The gentamicin concentration was determined before and after grinding of the cultures by using the COBAS INTEGRA fluorescence polarization system (Roche). The grinding efficacies ranged between 44 and 54%, as determined by viable cell counts. In the combination regimen the intracellular concentration of gentamicin increased to 186% compared to that achieved with gentamicin monotherapy. These data suggest that the synergy observed in vivo and in vitro is based on an increased intracellular penetration of the aminoglycoside, probably due to the effect of vancomycin on the permeability of the cell wall.

2001 ◽  
Vol 45 (1) ◽  
pp. 129-137 ◽  
Author(s):  
H. L. Rocchetta ◽  
C. J. Boylan ◽  
J. W. Foley ◽  
P. W. Iversen ◽  
D. L. LeTourneau ◽  
...  

ABSTRACT A noninvasive, real-time detection technology was validated for qualitative and quantitative antimicrobial treatment applications. Thelux gene cluster of Photorhabdus luminescenswas introduced into an Escherichia coli clinical isolate, EC14, on a multicopy plasmid. This bioluminescent reporter bacterium was used to study antimicrobial effects in vitro and in vivo, using the neutropenic-mouse thigh model of infection. Bioluminescence was monitored and measured in vitro and in vivo with an intensified charge-coupled device (ICCD) camera system, and these results were compared to viable-cell determinations made using conventional plate counting methods. Statistical analysis demonstrated that in the presence or absence of antimicrobial agents (ceftazidime, tetracycline, or ciprofloxacin), a strong correlation existed between bioluminescence levels and viable cell counts in vitro and in vivo. Evaluation of antimicrobial agents in vivo could be reliably performed with either method, as each was a sound indicator of therapeutic success. Dose-dependent responses could also be detected in the neutropenic-mouse thigh model by using either bioluminescence or viable-cell counts as a marker. In addition, the ICCD technology was examined for the benefits of repeatedly monitoring the same animal during treatment studies. The ability to repeatedly measure the same animals reduced variability within the treatment experiments and allowed equal or greater confidence in determining treatment efficacy. This technology could reduce the number of animals used during such studies and has applications for the evaluation of test compounds during drug discovery.


2005 ◽  
Vol 49 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Yasuki Kamai ◽  
Masayo Kakuta ◽  
Takahiro Shibayama ◽  
Takashi Fukuoka ◽  
Shogo Kuwahara

ABSTRACT The activities of R-135853, a novel sordarin derivative that possesses a 1,4-oxazepane ring moiety, were evaluated in vitro and in vivo. R-135853 exhibited potent in vitro activities against Candida albicans (fluconazole-susceptible strains), Candida glabrata, Candida tropicalis, and Cryptococcus neoformans, with MICs at which 90% of isolates were inhibited of 0.03, 1, 0.5, and 0.5 μg/ml, respectively. R-135853 also exhibited potent activities against fluconazole-susceptible dose-dependent and fluconazole-resistant strains of C. albicans, with MICs ranging from 0.03 to 0.06 μg/ml. However, R-135853 exhibited weak or no activity against Candida parapsilosis, Candida krusei, and Aspergillus spp. R-135853 exhibited dose-dependent efficacy against experimental murine hematogenous candidiasis induced by C. albicans when it was administered by both the subcutaneous and the oral routes and reduced viable cell counts in the kidneys significantly when it was administered at 50 mg/kg of body weight/dose (administration three times a day). In this model, R-135853 also exhibited dose-dependent efficacy by single oral administration. Subcutaneous administration of R-135853 exhibited dose-dependent efficacy against experimental murine esophageal candidiasis induced by fluconazole-resistant C. albicans, against which fluconazole at 50 mg/kg/dose was ineffective, and reduced viable cell counts in the esophagus significantly when it was administered at 10 and 50 mg/kg/dose. R-135853 eradicated C. albicans from the esophagi of one and four of five mice when it was administered at 10 and 50 mg/kg/dose, respectively. These results suggest that R-135853 is promising for the treatment of disseminated or mucosal candidiasis, including fluconazole-refractory infections.


2000 ◽  
Vol 44 (10) ◽  
pp. 2895-2896 ◽  
Author(s):  
M. H. Cynamon ◽  
J. L. Carter ◽  
C. M. Shoen

ABSTRACT ABT-773, a new ketolide antimicrobial agent, was evaluated in comparison to clarithromycin (CLA) in vitro against Mycobacterium avium complex (MAC) and in a beige mouse model of disseminated MAC infection. The MICs at which 50 and 90% of the isolates tested were inhibited were 2 and 4 μg/ml, respectively, for CLA and 8 and 16 μg/ml, respectively, for ABT-773. Eight CLA-resistant isolates were found to be resistant to ABT-773 (MICs > 64 μg/ml). In the in vivo study mice were treated with ABT-773 (50, 100, and 200 mg/kg of body weight) or CLA (200 mg/kg). Both ABT-773 (100 and 200 mg/kg) and CLA significantly decreased the viable cell counts in spleens and lungs. ABT-773 (200 mg/kg) and CLA had similar activities in lungs, but the former was more active in spleens.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 678 ◽  
Author(s):  
Je-Oh Lim ◽  
Na-Rae Shin ◽  
Yun-Soo Seo ◽  
Hyeon-Hwa Nam ◽  
Je-Won Ko ◽  
...  

Silica dioxide nanoparticles (SiONPs) have been applied to several fields, such as drug delivery and gene therapy. However, SiONPs are a constituent of fine dust and can induce excessive inflammatory responses in the lungs via the airways. Silibinin, a major component of silymarin, has been known for its anti-oxidant and anti-inflammatory effects. In the present study, we explored the protective effects of silibinin against SiONPs-induced airway inflammation and explored its underlying mechanism of action, focusing on thioredoxin-interacting protein (TXNIP)/mitogen-activated protein kinases (MAPKs) in vitro and in vivo. In SiONPs-stimulated NCI-H292 airway epithelial cells, silibinin treatment effectively suppressed the elevation of the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β, which was accompanied by the reduction in the expression of TXNIP, MAPKs, and activator protein-1 (AP-1). In SiONPs-treated mice, silibinin administration inhibited the increase in inflammatory cell counts and proinflammatory mediators, and it alleviated airway inflammation by SiONPs exposure. In addition, silibinin administration effectively suppressed the elevation of TXNIP/MAPKs/AP-1 signaling by SiONPs exposure. Taken together, silibinin effectively inhibited SiONPs-induced inflammatory responses, and this effect was closely related to the inhibition of TXNIP/MAPK/AP-1 signaling. These results suggested that silibinin might be useful for reducing pulmonary inflammation induced by SiONPs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2836-2836
Author(s):  
Nisar A. Baig ◽  
Ronald P. Taylor ◽  
Margaret A. Lindorfer ◽  
Amy K Church ◽  
Betsy R. LaPlant ◽  
...  

Abstract Abstract 2836 Monoclonal antibodies (mAb) are an effective but non-curative treatment of CLL. Although the mechanisms of action of mAb in vivo are not fully defined, complement dependent cytotoxicity (CDC) appears to play an important role. We have previously shown that addition of ofatumumab (OFA) significantly increases alemtuzumab (ALM) CDC in vitro and identified a subpopulation of CLL cells that are intrinsically resistant to activated complement. We propose that resistance to CDC could be an important cause of mAb treatment failure in CLL patients. To test the hypothesis that CLL cells treated in vivo with OFA would be resistant to subsequent OFA retreatment in vitro, we studied CLL cells and serum from 10 previously untreated patients with progressive CLL treated with pentostatin, cyclophosphamide, and ofatumumab (PCO). Methods. Patients received 300 mg of OFA followed by 2 mg/m2 of pentostatin and 600 mg/m2 of cyclophosphamide on day 1 of therapy. Samples were taken prior to treatment (S1), immediately after the OFA infusion and prior to chemotherapy (S2), and post-chemotherapy before the second dose of OFA on day 2 (S3). Mononuclear blood cells isolated from EDTA anticoagulated blood by Ficoll-Paque centrifugation were purified to achieve a concentration of > 90% CLL. CDC was assayed at a concentration of 2 × 106/ml CLL cells with 10 mg/ml of ALM (Genzyme), OFA (G.S.K.) or rituximab (RTX)(Genentech) in AIM V medium (Invitrogen, CA) and 10% normal human serum (10%NHS)(Sigma, MO) as a source of complement for 1 hour at 37°C. Absolute viable cell counts were measured by flow cytometry using counting beads (Trucount, BD, CA) and propidium iodide staining (Sigma, MO) with a FACSCalibur (BD, CA) and CellQuest Pro software (BD, CA). Percent CDC was calculated relative to counts for CLL cells treated with only 10%NHS. Binding of mAb and C3b to CLL cells was measured by flow cytometry with mouse anti-human Fc antibody FITC-HB43 and anti-C3b antibody FITC-7C12. C5 deficient serum (C5-serum)(Sigma, MO) was used to examine mAb and C3b binding without CDC. Results were expressed as delta mean fluorescent intensity (dMFI) relative to cells treated without mAb in 10%NHS or C5-serum as appropriate. Complement (CH50) was measured based on lysis of opsonized sheep red cells using standard methods. OFA concentrations in serum samples were determined by measuring the level of binding to Daudi cells compared to standards as previously described. Results: S1 CLL cells were significantly more susceptible to in vitro OFA CDC (median 30%) than S2 and S3 cells (both 0%, p=0.002)(Fig. 1). In contrast, high levels of CDC (median 86 – 88%) were induced in vitro by ALM in all these samples and prior in vivo exposure to OFA did not affect susceptibility to ALM CDC in vitro (p>0.1). CLL cells from S2&S3 had low levels of OFA binding both prior to and post in vitro exposure to OFA (median dMFI 2 and 3 respectively) which was significantly less than OFA binding for S1 (median dMFI 38 p=0.002) likely reflecting in vivo trogocytosis of bound OFA and CD20, as previously described for RTX. In vitro ALM binding was higher than OFA (median dMFI>150) in all specimens. C3b binding was low in S2&S3 both before and after in vitro OFA exposure (median dMFI 3 and 4 respectively) with significantly higher levels in S1 (median dMFI 94, p=0.002). C3b binding was higher in all CLL cells treated with ALM (median dMFI>358). OFA treatment resulted in marked decreases in serum complement levels in S2 (median 86%, range 65–98%) and S3 (median 78% range 61–88%) compared to S1. The median serum OFA concentration was 18.5 μg/ml (range 7.3–50.4) in S2 and 19.8 μg/ml (range 0–32.3) in S3. Conclusions: Circulating CLL cells from patients treated with OFA are resistant to in vitro OFA CDC primarily because of low levels of expression of CD20. The reduction in complement titers could limit in vivo CDC but we found no evidence that low levels of OFA were important. Cells surviving OFA in vivo do retain sensitivity to ALM CDC. Our data support the previous description of trogocytosis in CLL patients treated with RTX and suggest that lower doses of these mAb, that promote far lower levels of trogocytosis, could be more effective in sustaining CDC. In addition, our study provides pre-clinical data to support a clinical trial of combination therapy with OFA and ALM for CLL. Acknowledgment: This study was supported by funding from GlaxoSmithKline and the University of Iowa/Mayo Clinic Lymphoma SPORE (CA097274). Disclosures: Taylor: Genmab: Consultancy; Glaxo Smith Kline: Research Funding. Zent:GlaxoSmithKline: Research Funding; Genentech: Research Funding; Genzyme: Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2839-2839
Author(s):  
Jessie-Farah Fecteau ◽  
Davorka Messmer ◽  
Suping Zhang ◽  
Bing Cui ◽  
Liguang Chen ◽  
...  

Abstract Abstract 2839 The tumor microenvironment may play an important role in the growth and/or survival of leukemia cells of patients (pts) with chronic lymphocytic leukemia (CLL). Studies on the interaction of CLL cells with the microenvironment have been facilitated by our capacity to culture accessory cells in vitro. However, the conditions for culturing such cells in ambient oxygen(O2) at 21% are different than those present in lymphoid tissues which have O2 concentrations ranging from 1–7%. The difference between in vivo and in vitro O2 tensions might influence the biology of leukemia accessory cells. To examine this, we studied the effect(s) of O2 tension on our ability to propagate mesenchymal stromal cells (MSCs) from marrow aspirates of pts with CLL. Equal numbers of fresh or viably frozen marrow mononuclear cells were seeded in DMEM with 10% FBS into separate flasks for culture at 37° C in incubators at atmospheric O2 (Atmos-O2) or at 5% O2 (physiologic; Phys-O2), both with 5% CO2. The cells were monitored for viability and growth over time. We found that only Phys-O2 tension allowed for the generation and long-term expansion of MSCs. Out of the 6 pts tested, 3 developed virtually no MSCs (<10 cells), and 3 generated less than 6×104 MSCs (ranging from 2±1×104 to 6±1×104) in Atmos-O2 after 47±7 days in vitro. In contrast, high numbers of MSCs developed in Phys-O2 for all 6 pts, ranging from 45±8×104 to 80×104 cells, resulting in highly significant differences in yields between the 2 culture conditions (p<0.01). Moreover, the MSCs generated in Phys-O2 continued to proliferate over time, whereas MSCs in Atmos-O2 did not. Under Phys-O2, MSCs were successfully expanded from marrow aspirates of 16 out of 18 CLL pts. The morphology and phenotype of the MSCs generated were similar to that of healthy MSCs, expressing CD29, CD44, CD105 and D7-FIB, and lacking expression of CD14, CD31, CD34, or CD45. We next examined whether the differences in cell yields between the two culture conditions could be the result of compromised MSC proliferation in Atmos-O2. To address this, MSCs generated in Phys-O2 were seeded into separate flasks and exposed to Atmos-O2 or Phys-O2 and proliferation was monitored by BrdU incorporation and viable cell counts. We found that MSCs seeded in Atmos-O2 proliferated significantly less well than MSCs in Phys-O2 (n=3). However, MSC viability was not significantly affected by the change in O2 tension, suggesting that replicative senescence could be induced in MSCs exposed to Atmos-O2. To test this hypothesis, MSCs generated in Phys-O2 were seeded separately under Atmos-O2 or Phys-O2 and stained for the senescence-associated beta-galactosidase (SA-B-Gal) marker. We found a significant increase in the fraction SA-B-gal+ MSCs exposed to Atmos-O2 compared to Phys-O2 (70±18% vs. 13±5%; p<0.0001). MSC morphology in Atmos-O2 was also consistent with senescence, marked by a wide-spread cytoplasm and enlarged nucleus. The cell cycle regulator p16INK4 also was distinctively induced in MSCs exposed to Atmos-O2 compared to Phys-O2 (n=2), consistent with its role in inhibiting cell cycle progression and mediating senescence. We next ask if a disruption of the redox balance plays a role in MSC biology modulated by O2, using the free radical scavenger beta-mercaptoethanol (BME). MSCs generated in Phys-O2 were seeded separately under Phys-O2 or Atmos-O2 +/− BME. We observed that MSC proliferation in Atmos-O2 was restored by the addition of BME to the levels observed in Phys- O2 using BrdU incorporation (n=3). However, in a similar context, BME did not restore MSC expansion in Atmos-O2 measured by viable cell counts, or in the generation of MSCs in Atmos-O2 when added at culture initiation (n=2), suggesting that redox balance disruption is not the main mechanism by which high O2 tension affects MSC biology. We finally evaluated whether co-cultures of CLL cells and MSCs in Phys-O2 and Atmos-O2 tensions equally support CLL cell survival. We found that CLL cell survival was significantly enhanced when co-cultured in Phys-O2 compared to Atmos-O2 after 17 days (87±15% vs 44±17% viable cells; p<0.0001). These results suggest that Phys-O2 tension is not only critical to generate MSCs in vitro, but it also has a profound impact on the biology of these accessory cells, which in turn affects the survival of the leukemic cells. Studies conducted under Phys-O2 tension might further our understanding of the mechanisms governing CLL cell survival in vivo. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 189 (22) ◽  
pp. 8109-8119 ◽  
Author(s):  
Emmanuel Denou ◽  
Bernard Berger ◽  
Caroline Barretto ◽  
Jean-Michel Panoff ◽  
Fabrizio Arigoni ◽  
...  

ABSTRACT Work with pathogens like Vibrio cholerae has shown major differences between genes expressed in bacteria grown in vitro and in vivo. To explore this subject for commensals, we investigated the transcription of the Lactobacillus johnsonii NCC533 genome during in vitro and in vivo growth using the microarray technology. During broth growth, 537, 626, and 277 of the 1,756 tested genes were expressed during exponential phase, “adaptation” (early stationary phase), and stationary phase, respectively. One hundred one, 150, and 33 genes, respectively, were specifically transcribed in these three phases. To explore the in vivo transcription program, we fed L. johnsonii containing a resistance plasmid to antibiotic-treated mice. After a 2-day washout phase, we determined the viable-cell counts of lactobacilli that were in the lumina and associated with the mucosae of different gut segments. While the cell counts showed a rather uniform distribution along the gut, we observed marked differences with respect to the expression of the Lactobacillus genome. The largest number of transcribed genes was in the stomach (n = 786); the next-largest numbers occurred in the cecum (n = 391) and the jejunum (n = 296), while only 26 Lactobacillus genes were transcribed in the colon. In vitro and in vivo transcription programs overlapped only partially. One hundred ninety-one of the transcripts from the lactobacilli in the stomach were not detected during in vitro growth; 202 and 213 genes, respectively, were transcribed under all in vitro and in vivo conditions; but the core transcriptome for all growth conditions comprised only 103 genes. Forty-four percent of the NCC533 genes were not detectably transcribed under any of the investigated conditions. Nontranscribed genes were clustered on the genome and enriched in the variable-genome part. Our data revealed not only major differences between in vitro- and in vivo-expressed genes in a Lactobacillus gut commensal organism but also marked changes in the expression of genes along the digestive tract.


1994 ◽  
Vol 71 (04) ◽  
pp. 499-506 ◽  
Author(s):  
Mark W C Hatton ◽  
Bonnie Ross-Ouellet

SummaryThe behavior of 125I-labeled recombinant hirudin towards the uninjured and de-endothelialized rabbit aorta wall has been studied in vitro and in vivo to determine its usefulness as an indicator of thrombin activity associated with the aorta wall. Thrombin adsorbed to either sulfopropyl-Sephadex or heparin-Sepharose bound >95% of 125I-r-hirudin and the complex remained bound to the matrix. Binding of 125I-r-hirudin to the exposed aorta subendothelium (intima-media) in vitro was increased substantially if the tissue was pre-treated with thrombin; the quantity of l25I-r-hirudin bound to the de-endothelialized intima-media (i.e. balloon-injured in vitro) correlated positively with the quantity of bound 131I-thrombin (p <0.01). Aortas balloon-injured in vivo were measured for thrombin release from, and binding of 125I-r-hirudin to, the de-endothelialized intimal surface in vitro; 125I-r-hirudin binding correlated with the amount of active thrombin released (p <0.001). Uptake of 125I-r-hirudin by the aorta wall in vivo was proportional to the uptake of 131I-fibrinogen (as an indicator of thrombin activity) before and after balloon injury. After 30 min in the circulation, specific 125I-r-hirudin binding to the uninjured and de-endo- thelialized (at 1.5 h after injury) aorta wall was equivalent to 3.4 (± 2.5) and 25.6 (±18.1) fmol of thrombin/cm2 of intima-media, respectively. Possibly, only hirudin-accessible, glycosaminoglycan-bound thrombin is measured in this way.


2018 ◽  
Vol 4 (4) ◽  
pp. 523-531
Author(s):  
Hina Mumtaz ◽  
Muhammad Asim Farooq ◽  
Zainab Batool ◽  
Anam Ahsan ◽  
Ashikujaman Syed

The main purpose of development pharmaceutical dosage form is to find out the in vivo and in vitro behavior of dosage form. This challenge is overcome by implementation of in-vivo and in-vitro correlation. Application of this technique is economical and time saving in dosage form development. It shortens the period of development dosage form as well as improves product quality. IVIVC reduce the experimental study on human because IVIVC involves the in vivo relevant media utilization in vitro specifications. The key goal of IVIVC is to serve as alternate for in vivo bioavailability studies and serve as justification for bio waivers. IVIVC follows the specifications and relevant quality control parameters that lead to improvement in pharmaceutical dosage form development in short period of time. Recently in-vivo in-vitro correlation (IVIVC) has found application to predict the pharmacokinetic behaviour of pharmaceutical preparations. It has emerged as a reliable tool to find the mode of absorption of several dosage forms. It is used to correlate the in-vitro dissolution with in vivo pharmacokinetic profile. IVIVC made use to predict the bioavailability of the drug of particular dosage form. IVIVC is satisfactory for the therapeutic release profile specifications of the formulation. IVIVC model has capability to predict plasma drug concentration from in vitro dissolution media.


2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


Sign in / Sign up

Export Citation Format

Share Document