scholarly journals Environmental Spread of New Delhi Metallo-β-Lactamase-1-Producing Multidrug-Resistant Bacteria in Dhaka, Bangladesh

2017 ◽  
Vol 83 (15) ◽  
Author(s):  
Mohammad Aminul Islam ◽  
Moydul Islam ◽  
Rashedul Hasan ◽  
M. Iqbal Hossain ◽  
Ashikun Nabi ◽  
...  

ABSTRACT Resistance to carbapenem antibiotics through the production of New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an emerging challenge in the treatment of bacterial infections. To monitor the possible source of the spread of these organisms in Dhaka, Bangladesh, we conducted a comparative analysis of wastewater samples from hospital-adjacent areas (HAR) and from community areas (COM), as well as public tap water samples, for the occurrence and characteristics of NDM-1-producing bacteria. Of 72 HAR samples tested, 51 (71%) samples were positive for NDM-1-producing bacteria, as evidenced by phenotypic tests and the presence of the bla NDM-1 gene, compared to 5 of 41 (12.1%) samples from COM samples (P < 0.001). All tap water samples were negative for NDM-1-producing bacteria. Klebsiella pneumoniae (44%) was the predominant bacterial species among bla NDM-1-positive isolates, followed by Escherichia coli (29%), Acinetobacter spp. (15%), and Enterobacter spp. (9%). These bacteria were also positive for one or more other antibiotic resistance genes, including bla CTX-M-1 (80%), bla CTX-M-15 (63%), bla TEM (76%), bla SHV (33%), bla CMY-2 (16%), bla OXA-48-like (2%), bla OXA-1 (53%), and bla OXA-47-like (60%) genes. Around 40% of the isolates contained a qnr gene, while 50% had 16S rRNA methylase genes. The majority of isolates hosted multiple plasmids, and plasmids of 30 to 50 MDa carrying bla NDM-1 were self-transmissible. Our results highlight a number of issues related to the characteristics and source of spread of multidrug-resistant bacteria as a potential public health threat. In view of the existing practice of discharging untreated liquid waste into the environment, hospitals in Dhaka city contribute to the potential dissemination of NDM-1-producing bacteria into the community. IMPORTANCE Infections caused by carbapenemase-producing Enterobacteriaceae are extremely difficult to manage due to their marked resistance to a wide range of antibiotics. NDM-1 is the most recently described carbapenemase, and the bla NDM-1 gene, which encodes NDM-1, is located on self-transmissible plasmids that also carry a considerable number of other antibiotic resistance genes. The present study shows a high prevalence of NDM-1-producing organisms in the wastewater samples from hospital-adjacent areas as a potential source for the spread of these organisms to community areas in Dhaka, Bangladesh. The study also examines the characteristics of the isolates and their potential to horizontally transmit the resistance determinants. The significance of our research is in identifying the mode of spread of multiple-antibiotic-resistant organisms, which will allow the development of containment measures, leading to broader impacts in reducing their spread to the community.

Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1103
Author(s):  
Oskar A. Palacios ◽  
Jaime Raúl Adame-Gallegos ◽  
Blanca Estela Rivera-Chavira ◽  
Guadalupe Virginia Nevarez-Moorillon

Multidrug-resistant bacteria and antibiotic resistance genes can be monitored as indicators of contamination in several environments. Mangroves are among the most productive ecosystems, and although they can be resilient to the action of climate phenomena, their equilibrium can be affected by anthropogenic activities. Regarding the presence and persistence of multidrug-resistant bacteria in mangroves, it is common to think that this ecosystem can function as a reservoir, which can disperse the antibiotic resistance capacity to human pathogens, or serve as a filter to eliminate drug-resistant genes. The possible impact of anthropogenic activities carried out near mangroves is reviewed, including wastewater treatment, food production systems, leisure, and tourism. Adverse effects of antibiotic resistance genes or multidrug-resistant bacteria, considered as emerging contaminants, have not been reported yet in mangroves. On the contrary, mangrove ecosystems can be a natural way to eliminate antibiotics, antibiotic-resistant bacteria, and even antibiotic-resistant genes from the environment. Although mangroves’ role in decreasing antibiotics and antibiotic resistance genes from the environment is being proposed, the mechanisms by which these plants reduce these emerging contaminants have not been elucidated and need further studies. Additionally, further evaluation is needed on the effects of antibiotics and antibiotic-resistant bacteria in mangroves to generate an analysis of the human contribution to the degradation of this specific ecosystem as well as to define if these contaminants can be used as indicators of contamination in mangrove ecosystems.


2020 ◽  
Vol 9 (34) ◽  
Author(s):  
Catrina Olivera ◽  
Jasna Rakonjac

ABSTRACT We report the complete genome of a multidrug-resistant Escherichia coli strain isolated from a New Zealand patient with a history of hospitalization in India. The strain, carrying eight plasmids, harbors chromosome-encoded nfsA and nfsB mutations, which cause nitrofuran resistance, and class C β-lactamase (blaEC) and plasmid-encoded blaNDM-1, blaCTX-M-15, and blaCMY-6, as well as other antibiotic resistance genes.


mSphere ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Valerie J. Price ◽  
Wenwen Huo ◽  
Ardalan Sharifi ◽  
Kelli L. Palmer

ABSTRACT Enterococcus faecalis is a bacterium that normally inhabits the gastrointestinal tracts of humans and other animals. Although these bacteria are members of our native gut flora, they can cause life-threatening infections in hospitalized patients. Antibiotic resistance genes appear to be readily shared among high-risk E. faecalis strains, and multidrug resistance in these bacteria limits treatment options for infections. Here, we find that CRISPR-Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, significantly impact the spread of antibiotic resistance genes in E. faecalis populations. The loss of these systems in high-risk E. faecalis suggests that they are immunocompromised, a tradeoff that allows them to readily acquire new genes and adapt to new antibiotics. Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis. IMPORTANCE Enterococcus faecalis is a bacterium that normally inhabits the gastrointestinal tracts of humans and other animals. Although these bacteria are members of our native gut flora, they can cause life-threatening infections in hospitalized patients. Antibiotic resistance genes appear to be readily shared among high-risk E. faecalis strains, and multidrug resistance in these bacteria limits treatment options for infections. Here, we find that CRISPR-Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, significantly impact the spread of antibiotic resistance genes in E. faecalis populations. The loss of these systems in high-risk E. faecalis suggests that they are immunocompromised, a tradeoff that allows them to readily acquire new genes and adapt to new antibiotics.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3269 ◽  
Author(s):  
Jess A. Millar ◽  
Rahul Raghavan

We explored the bacterial diversity of untreated sewage influent samples of a wastewater treatment plant in Tucson, AZ and discovered that Arcobacter cryaerophilus, an emerging human pathogen of animal origin, was the most dominant bacterium. The other highly prevalent bacteria were members of the phyla Bacteroidetes and Firmicutes, which are major constituents of human gut microbiome, indicating that bacteria of human and animal origin intermingle in sewage. By assembling a near-complete genome of A. cryaerophilus, we show that the bacterium has accumulated a large number of antibiotic resistance genes (ARGs) probably enabling it to thrive in the wastewater. We also determined that a majority of ARGs was being expressed in sewage, suggestive of trace levels of antibiotics or other stresses that could act as a selective force that amplifies multidrug resistant bacteria in municipal sewage. Because all bacteria are not eliminated even after several rounds of wastewater treatment, ARGs in sewage could affect public health due to their potential to contaminate environmental water.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasmin Neves Vieira Sabino ◽  
Mateus Ferreira Santana ◽  
Linda Boniface Oyama ◽  
Fernanda Godoy Santos ◽  
Ana Júlia Silva Moreira ◽  
...  

AbstractInfections caused by multidrug resistant bacteria represent a therapeutic challenge both in clinical settings and in livestock production, but the prevalence of antibiotic resistance genes among the species of bacteria that colonize the gastrointestinal tract of ruminants is not well characterized. Here, we investigate the resistome of 435 ruminal microbial genomes in silico and confirm representative phenotypes in vitro. We find a high abundance of genes encoding tetracycline resistance and evidence that the tet(W) gene is under positive selective pressure. Our findings reveal that tet(W) is located in a novel integrative and conjugative element in several ruminal bacterial genomes. Analyses of rumen microbial metatranscriptomes confirm the expression of the most abundant antibiotic resistance genes. Our data provide insight into antibiotic resistange gene profiles of the main species of ruminal bacteria and reveal the potential role of mobile genetic elements in shaping the resistome of the rumen microbiome, with implications for human and animal health.


2016 ◽  
Vol 82 (12) ◽  
pp. 3605-3610 ◽  
Author(s):  
Andreas F. Wendel ◽  
Sofija Ressina ◽  
Susanne Kolbe-Busch ◽  
Klaus Pfeffer ◽  
Colin R. MacKenzie

ABSTRACTReports of outbreaks concerning carbapenemase-producing Gram-negative bacteria in which the main source of transmission is the hospital environment are increasing. This study describes the results of environmental sampling in a protracted polyspecies metallo-beta-lactamase GIM-1 outbreak driven by plasmids and bacterial clones ofEnterobacter cloacaeandPseudomonas aeruginosain a tertiary care center. Environmental sampling targeting wet locations (especially sinks) was carried out on a surgical intensive care unit and on a medical ward on several occasions in 2012 and 2013. We were able to demonstrate 43blaGIM-1-carrying bacteria (mainly nonfermenters but alsoEnterobacteriaceae) that were either related or unrelated to clinical strains in 30 sinks and one hair washbasin. GIM-1 was found in 12 different species, some of which are described here as carriers of GIM-1. Forty out of 43 bacteria displayed resistance to carbapenems and, in addition, to various non-beta-lactam antibiotics. Colistin resistance was observed in twoE. cloacaeisolates with MICs above 256 mg/liter. TheblaGIM-1gene was harbored in 12 different class 1 integrons, some without the typical 3′ end. TheblaGIM-1gene was localized on plasmids in five isolates.In vitroplasmid transfer by conjugation was successful in one isolate. The environment, with putatively multispecies biofilms, seems to be an important biological niche for multidrug-resistant bacteria and resistance genes. Biofilms may serve as a “melting pot” for horizontal gene transfer, for dissemination into new species, and as a reservoir to propagate future hospital outbreaks.IMPORTANCEIn Gram-negative bacteria, resistance to the clinically relevant broad-spectrum carbapenem antibiotics is a major public health concern. Major reservoirs for these resistant organisms are not only the gastrointestinal tracts of animals and humans but also the (hospital) environment. Due to the difficulty in eradicating biofilm formation in the latter, a sustained dissemination of multidrug-resistant bacteria from the environment can occur. In addition, horizontal transfer of resistance genes on mobile genetic elements within biofilms adds to the total “resistance gene pool” in the environment. To gain insight into the transmission pathways of a rare and locally restricted carbapenemases resistance gene (blaGIM-1), we analyzed the genetic background of theblaGIM-1gene in environmental bacteria during a long-term polyspecies outbreak in a German hospital.


2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Edgarthe Priscilla Ngaiganam ◽  
Isabelle Pagnier ◽  
Wafaa Chaalal ◽  
Thongpan Leangapichart ◽  
Selma Chabou ◽  
...  

Abstract Background We investigate here the presence of multidrug-resistant bacteria isolated from stool samples of yellow-legged gulls and chickens (n = 136) in urban parks and beaches of Marseille, France. Bacterial isolation was performed on selective media, including MacConkey agar with ceftriaxone and LBJMR medium. Antibiotic resistance genes, including extended-spectrum β-lactamases (ESBL) (i.e. blaCTX-M, blaTEM and blaSHV), carbapenemases (blaKPC, blaVIM, blaNDM, blaOXA-23, blaOXA-24, blaOXA-48 and blaOXA-58) and colistin resistance genes (mcr-1 to mcr-5) were screened by real-time PCR and standard PCR and sequenced when found. Results Of the 136 stools samples collected, seven ESBL-producing Gram-negative bacteria (BGN) and 12 colistin-resistant Enterobacteriaceae were isolated. Among them, five ESBL-producing Escherichia coli and eight colistin-resistant Hafnia alvei strains were identified. Four blaTEM-1 genes were detected in yellow-legged gulls and chickens. Three CTX-M-15 genes were detected in yellow-legged gulls and pigeons, and one CTX-M-1 in a yellow-legged gull. No mcr-1 to mcr-5 gene were detected in colistin-resistant isolates. Genotyping of E. coli strains revealed four different sequence types already described in humans and animals and one new sequence type. Conclusions Urban birds, which are believed to have no contact with antibiotics appear as potential source of ESBL genes. Our findings highlight the important role of urban birds in the proliferation of multidrug-resistant bacteria and also the possible zoonotic transmission of such bacteria from wild birds to humans.


2005 ◽  
Vol 68 (10) ◽  
pp. 2022-2029 ◽  
Author(s):  
SHIN-HEE KIM ◽  
CHENG-I WEI ◽  
YWH-MIN TZOU ◽  
HAEJUNG AN

Multidrug-resistant enteric bacteria were isolated from turkey, cattle, and chicken farms and retail meat products in Oklahoma. Among the isolated species, multidrug-resistant Klebsiella pneumoniae was prevalently isolated from most of the collected samples. Therefore, a total of 132 isolates of K. pneumoniae were characterized to understand their potential roles in the dissemination of antibiotic-resistance genes in the food chains. Multidrug-resistant K. pneumoniae was most frequently recovered from a turkey farm and ground turkey products among the tested samples. All isolates were resistant to ampicillin, tetracycline, streptomycin, gentamycin, and kanamycin. Class 1 integrons located in plasmids were identified as a common carrier of the aadA1 gene, encoding resistance to streptomycin and spectinomycin. Production of β-lactamase in the K. pneumoniae isolates played a major role in the resistance to β-lactam agents. Most isolates (96%) possessed blaSHV-1. Five strains were able to express both SHV-11 (pI 6.2) and TEM-1 (pI 5.2) β-lactamase. Transfer of these antibiotic-resistance genes to Escherichia coli was demonstrated by transconjugation. The bacterial genomic DNA restriction patterns by pulsed-field gel electrophoresis showed that the same clones of multidrug-resistant K. pneumoniae remained in feathers, feed, feces, and drinking water in turkey environments, indicating the possible dissemination of antibiotic-resistance genes in the ecosystem and cross-contamination of antibiotic-resistant bacteria during processing and distribution of products.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 344
Author(s):  
Momna Rubab ◽  
Deog-Hwan Oh

Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen associated with human gastroenteritis outbreaks. Extensive use of antibiotics in agriculture selects resistant bacteria that may enter the food chain and potentially causes foodborne illnesses in humans that are less likely to respond to treatment with conventional antibiotics. Due to the importance of antibiotic resistance, this study aimed to investigate the combination of phenotypic and genotypic antibiotic resistance in STEC isolates belonging to serogroups O26, O45, O103, O104, O111, O121, O145, and O157 using disc diffusion and polymerase chain reaction (PCR), respectively. All strains were phenotypically resistant to at least one antibiotic, with 100% resistance to erythromycin, followed by gentamicin (98%), streptomycin (82%), kanamycin (76%), and ampicillin (72%). The distribution of antibiotic resistance genes (ARGs) in the STEC strains was ampC (47%), aadA1 (70%), ere(A) (88%), blaSHV (19%), blaCMY (27%), aac(3)-I (90%), and tet(A) (35%), respectively. The results suggest that most of the strains were multidrug-resistant (MDR) and the most often observed resistant pattern was of aadA1, ere(A), and aac(3)-I genes. These findings indicate the significance of monitoring the prevalence of MDR in both animals and humans around the globe. Hence, with a better understanding of antibiotic genotypes and phenotypes among the diverse STEC strains obtained, this study could guide the administration of antimicrobial drugs in STEC infections when necessary.


Sign in / Sign up

Export Citation Format

Share Document