scholarly journals Single-Nucleotide Primer Extension Assay for Detection and Sequence Typing of “Dehalococcoides” spp.

2007 ◽  
Vol 74 (1) ◽  
pp. 300-304 ◽  
Author(s):  
Marcell Nikolausz ◽  
Antonis Chatzinotas ◽  
Márton Palatinszky ◽  
Gwenaël Imfeld ◽  
Paula Martinez ◽  
...  

ABSTRACT A single-nucleotide primer extension (SNuPE) assay in combination with taxon-specific 16S rRNA gene PCR analysis was developed for the detection and typing of populations of the genus “Dehalococcoides”. The specificity of the assay was evaluated with 16S rRNA gene sequences obtained from an isolate and an environmental sample representing two Dehalococcoides subgroups, i.e., the Cornell and the Pinellas subgroups. Only one sequence type, belonging to the Pinellas subgroup, was detected in a Bitterfeld-Wolfen region aquifer containing chlorinated ethenes as the main contaminants. The three-primer hybridization assay thus provided a fast and easy-to-implement method for confirming the specificity of taxon-specific PCR and allowed rapid additional taxonomic classification into subgroups. This study demonstrates the great potential of SNuPE as a novel approach for rapid parallel detection of microorganisms and typing of different nucleic acid signature sequences from environmental samples.

2009 ◽  
Vol 75 (9) ◽  
pp. 2850-2860 ◽  
Author(s):  
Marcell Nikolausz ◽  
Antonis Chatzinotas ◽  
András Táncsics ◽  
Gwenaël Imfeld ◽  
Matthias Kästner

ABSTRACT Single-nucleotide primer extension (SNuPE) is an emerging tool for parallel detection of DNA sequences of different target microorganisms. The specificity and sensitivity of the SNuPE method were assessed by performing single and multiplex reactions using defined template mixtures of 16S rRNA gene PCR products obtained from pure bacterial cultures. The mismatch discrimination potential of primer extension was investigated by introducing different single and multiple primer-target mismatches. The type and position of the mismatch had significant effects on the specificity of the assay. While a 3′-terminal mismatch has a considerable effect on the fidelity of the extension reaction, the internal mismatches influenced hybridization mostly by destabilizing the hybrid duplex. Thus, carefully choosing primer-mismatch positions should result in a high signal-to-noise ratio and prevent any nonspecific extension. Cyclic fluorescent labeling of the hybridized primers via extension also resulted in a significant increase in the detection sensitivity of the PCR. In multiplex reactions, the signal ratios detected after specific primer extension correlated with the original template ratios. In addition, reverse-transcribed 16S rRNA was successfully used as a nonamplified template to prove the applicability of SNuPE in a PCR-independent manner. In conclusion, this study demonstrates the great potential of SNuPE for simultaneous detection and typing of various nucleic acid sequences from both environmental and engineered samples.


2004 ◽  
Vol 54 (4) ◽  
pp. 1349-1353 ◽  
Author(s):  
Chuji Hiruki ◽  
Keri Wang

Clover proliferation phytoplasma (CPR) is designated as the reference strain for the CP phylogenetic group or subclade, on the basis of molecular analyses of genomic DNA, the 16S rRNA gene and the 16S–23S spacer region. Other strains related to CPR include alfalfa witches'-broom (AWB), brinjal little leaf (BLL), beet leafhopper-transmitted virescence (BLTV), Illinois elm yellows (ILEY), potato witches'-broom (PWB), potato yellows (PY), tomato big bud in California (TBBc) and phytoplasmas from Fragaria multicipita (FM). Phylogenetic analysis of the 16S rRNA gene sequences of BLL, CPR, FM and ILEY, together with sequences from 16 other phytoplasmas that belong to the ash yellows (AshY), jujube witches'-broom (JWB) and elm yellows (EY) groups that were available in GenBank, produced a tree on which these phytoplasmas clearly clustered as a discrete group. Three subgroups have been classified on the basis of sequence homology and the collective RFLP patterns of amplified 16S rRNA genes. AWB, BLTV, PWB and TBBc are assigned to taxonomic subgroup CP-A, FM belongs to subgroup CP-B and BLL and ILEY are assigned to subgroup CP-C. Genetic heterogeneity between different isolates of AWB, CPR and PWB has been observed from heteroduplex mobility assay analysis of amplified 16S rRNA genes and the 16S–23S spacer region. Two unique signature sequences that can be utilized to distinguish the CP group from others were present. On the basis of unique properties of the DNA from clover proliferation phytoplasma, the name ‘Candidatus Phytoplasma trifolii’ is proposed for the CP group.


2017 ◽  
Vol 61 ◽  
pp. 69-84 ◽  
Author(s):  
Ali Naghoni ◽  
Giti Emtiazi ◽  
Mohammad Ali Amoozegar ◽  
Zahra Etemadifar ◽  
Seyed Abolhassan Shahzadeh Fazeli

Repetitive extragenic palindromic elements-polymerase chain reaction (rep-PCR) with 16S ribosomal ribonucleic acid (16S rRNA) genes sequences successfully used for the analysis of microbial community. In this study, the prokaryotic community in Lake Meyghan described by using rep-PCR analysis along with 16S rRNA gene sequencing. The water samples were collected from Lake Meyghan in November 2013. All samples were diluted and cultured on three different media. To estimate the number of prokaryotes per milliliter of the lake we used quantitative real‑time PCR (qPCR). Rep-PCR combination with 16S rRNA gene sequencing was performed to investigate prokaryotes biodiversity in the lake. 305 strains were isolated in this work; 113 isolates for green region, 102 isolates for red region, and 90 isolates for white region. The dendrograms generated 10, 7, and 9 clusters for a 70 % similarity cut-off for green, red, and white regions, respectively. Based on rep-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by (77.5 %)Halobacteriacaeand many isolates were related to the generaHalorubrum,Haloarcula,Haloterrigena,Natrinema, andHalovivaxin the white region. In the red region more isolated strains (57.5 %) belonged toBacillaceaeand the remaining 42.5 % of isolates belonged to archaea domain,Halorubrum, andHaloarcula. In the green region members ofGammaproteobacteriawere recoverd, this region was dominant withPseudoalteromonas,Salinivibrio, andAliidiomarina.


Plant Disease ◽  
2021 ◽  
Author(s):  
Qi Wei ◽  
Jie Li ◽  
Shuai Yang ◽  
Wenzhong Wang ◽  
Fanxiang Min ◽  
...  

Common scab (CS) caused by Streptomyces spp. is a significant soilborne potato disease that results in tremendous economic losses globally. Identification of CS-associated species of the genus Streptomyces can enhance understanding of the genetic variation of these bacterial species and is necessary for the control of this epidemic disease. The present study isolated Streptomyces strain 6-2-1(1) from scabby potatoes in Keshan County, Heilongjiang Province, China. PCR analysis confirmed that the strain harbored the characteristic Streptomyces pathogenicity island (PAI) genes (txtA, txtAB, nec1, and tomA). Pathogenicity assays proved that the strain caused typical scab lesions on potato tuber surfaces and necrosis on radish seedlings and potato slices. Subsequently, the strain was systemically characterized at morphological, physiological, biochemical and phylogenetic levels. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 6-2-1(1) shared 99.86% sequence similarity with Streptomyces rhizophilus JR-41T, isolated initially from bamboo in rhizospheric soil in Korea. PCR amplification followed by Sanger sequencing of the 16S rRNA gene of 164 scabby potato samples collected in Heilongjiang Province from 2019 to 2020 demonstrated that approximately 2% of the tested samples were infected with S. rhizophilus. Taken together, these results demonstrate that S. rhizophilus is capable of causing potato CS disease and may pose a potential challenge to potato production in Heilongjiang Province of China.


2019 ◽  
Vol 47 (18) ◽  
pp. e103-e103 ◽  
Author(s):  
Benjamin J Callahan ◽  
Joan Wong ◽  
Cheryl Heiner ◽  
Steve Oh ◽  
Casey M Theriot ◽  
...  

AbstractTargeted PCR amplification and high-throughput sequencing (amplicon sequencing) of 16S rRNA gene fragments is widely used to profile microbial communities. New long-read sequencing technologies can sequence the entire 16S rRNA gene, but higher error rates have limited their attractiveness when accuracy is important. Here we present a high-throughput amplicon sequencing methodology based on PacBio circular consensus sequencing and the DADA2 sample inference method that measures the full-length 16S rRNA gene with single-nucleotide resolution and a near-zero error rate. In two artificial communities of known composition, our method recovered the full complement of full-length 16S sequence variants from expected community members without residual errors. The measured abundances of intra-genomic sequence variants were in the integral ratios expected from the genuine allelic variants within a genome. The full-length 16S gene sequences recovered by our approach allowed Escherichia coli strains to be correctly classified to the O157:H7 and K12 sub-species clades. In human fecal samples, our method showed strong technical replication and was able to recover the full complement of 16S rRNA alleles in several E. coli strains. There are likely many applications beyond microbial profiling for which high-throughput amplicon sequencing of complete genes with single-nucleotide resolution will be of use.


2002 ◽  
Vol 68 (10) ◽  
pp. 5064-5081 ◽  
Author(s):  
Alexander Loy ◽  
Angelika Lehner ◽  
Natuschka Lee ◽  
Justyna Adamczyk ◽  
Harald Meier ◽  
...  

ABSTRACT For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP-PhyloChip for diversity screening of SRPs in environmental and clinical samples was tested by using samples from periodontal tooth pockets and from the chemocline of a hypersaline cyanobacterial mat from Solar Lake (Sinai, Egypt). Consistent with previous studies, SRP-PhyloChip indicated the occurrence of Desulfomicrobium spp. in the tooth pockets and the presence of Desulfonema- and Desulfomonile-like SRPs (together with other SRPs) in the chemocline of the mat. The SRP-PhyloChip results were confirmed by several DNA microarray-independent techniques, including specific PCR amplification, cloning, and sequencing of SRP 16S rRNA genes and the genes encoding the dissimilatory (bi)sulfite reductase (dsrAB).


Microbiology ◽  
2005 ◽  
Vol 151 (6) ◽  
pp. 2039-2046 ◽  
Author(s):  
Joy E. M. Watts ◽  
Sonja K. Fagervold ◽  
Harold D. May ◽  
Kevin R. Sowers

Polychlorinated biphenyls (PCBs) accumulate and persist in sediments posing a risk to human health and the environment. Highly chlorinated PCBs are reductively dechlorinated in anaerobic sediments and two bacteria, designated o-17 and DF-1, from a novel phylogenetic group that reductively dechlorinate PCBs have recently been identified. However, there is a paucity of knowledge about the distribution, diversity and ecology of PCB-dechlorinating bacteria due to difficulty in obtaining pure cultures and the lack of detection by universal PCR 16S rRNA gene primer sets in sediments. A specific PCR primer was developed and optimized for detection of o-17/DF-1 and other closely related bacteria in the environment. Using this primer set it was determined that bacteria of this group were enriched in sediment microcosms from Baltimore Harbour concurrent with active dechlorination of 2,2′,3,4,4′,5′-hexachlorobiphenyl. Additional 16S rRNA gene sequences that had high levels of similarity to described PCB dechlorinators were detected in sediments from the Elizabeth River tributary of Chesapeake Bay, which had confirmed PCB-dechlorinating activities. Phylogenetic comparison of these detected 16S rRNA gene sequences revealed a relatively diverse group of organisms within the dehalogenating Chloroflexi that are distinct from the Dehalococcoides spp. Results from this study indicate that reductive PCB dechlorination activity may be catalysed by a previously undescribed group of micro-organisms that appear to be prevalent in PCB-impacted sites.


2019 ◽  
Vol 42 (2) ◽  
pp. 181-188
Author(s):  
Hayder N. Ayyez ◽  
Yahia I. Khudhair ◽  
Qassim Haleem Kshash

AbstractAnaplasma spp. are widely spread rickettsial bacteria transmitted by ticks and placing high impacts on veterinary and public health. A limited number of studies have been carried out on Anaplasmosis in the central part of Iraq. This study was conducted to determine the presence of Anaplasma spp. in cattle in Al-Qadisiyah province, Iraq. A total of 400 blood specimens were collected from cattle suffering from heavy tick infestation. Cattle were blood-sampled from four hyper-endemic areas with ticks. Blood samples were screened using microscopic and polymerase chain reaction (PCR) methods. Diff-quick stained blood smears revealed Anaplasma-like inclusion bodies in 254 (63.5%) samples. According to the 16S rRNA-gene-based PCR analysis, Anaplasma spp. was detected in 124 of the 400 (31%) samples, divided as 96/254 (37.8%) among the microscopical positive samples and 28/146 (19.17%) among the microscopical negative samples. Phylogenetic analysis based on the partial 16S rRNA gene sequencing of ten-PCR positive samples were 99–97% identical to sequences deposited in the GenBank, revealing presence of A. phagocytophilum, A. marginale and unnamed Anaplasma spp. in 40%, 20%, and 40% samples, respectively. Relationships among Anaplasma spp. infections and cattle breed, age, and sex were analyzed. Calves less than one year old showed significantly higher rates (p<0.005) than those from other age groups, whereas sex and breed demonstrated no significant differences (p˃0.001). This study shows that a variety of Anaplasma spp., were endemic in central part of Iraq and is still a hidden problem in cattle in the hyperendemic areas of tick, which requires serious control strategies.


2018 ◽  
Author(s):  
Keita Takeda ◽  
Kinuyo Chikamatsu ◽  
Yuriko Igarashi ◽  
Yuta Morishige ◽  
Yoshiro Murase ◽  
...  

AbstractNon-tuberculosis mycobacteria (NTM) can carry two or more 16S rRNA gene copies that are, in some instances, non-identical. In this study, we used a combined cloning and sequencing approach to analyze the 16S rRNA gene sequences of six NTM species,Mycobacterium cosmeticum, M. pallens, M. hodleri, M. crocinum, M. flavescens, andM. xenopi. The approach facilitated the identification of two distinct gene copies in each species. The twoM. cosmeticumgenes had a single nucleotide difference, whereas two nucleotide polymorphisms were identified inM. hodleri, M. flavescens, andM. xenopi. M. pallenshad a difference in four nucleotides andM. crocinumin 23. Hence, we showed that the six NTM species possess at least two non-identical 16S rRNA gene copies.ImportanceThe presence of multiple 16S rRNA gene copies with nucleotide polymorphisms represents a challenge for species identification using 16S rRNA as the target sequence. Our analysis was focused on six NTM species,M. cosmeticum, M. pallens, M. hodleri, M. crocinum, M. flavescens, andM. xenopi. As a result, we generated the full-length sequences of two non-identical 16S rRNA copies for each NTM species. The data will be helpful for the sequence analysis of specimens or other samples.


Sign in / Sign up

Export Citation Format

Share Document