scholarly journals Molecular Control of Sucrose Utilization in Escherichia coli W, an Efficient Sucrose-Utilizing Strain

2012 ◽  
Vol 79 (2) ◽  
pp. 478-487 ◽  
Author(s):  
Suriana Sabri ◽  
Lars K. Nielsen ◽  
Claudia E. Vickers

ABSTRACTSucrose is an industrially important carbon source for microbial fermentation. Sucrose utilization inEscherichia coli, however, is poorly understood, and most industrial strains cannot utilize sucrose. The roles of the chromosomally encoded sucrose catabolism (csc) genes inE. coliW were examined by knockout and overexpression experiments. At low sucrose concentrations, thecscgenes are repressed and cells cannot grow. Removal of either the repressor protein (cscR) or the fructokinase (cscK) gene facilitated derepression. Furthermore, combinatorial knockout ofcscRandcscKconferred an improved growth rate on low sucrose. The invertase (cscA) and sucrose transporter (cscB) genes are essential for sucrose catabolism inE. coliW, demonstrating that no other genes can provide sucrose transport or inversion activities. However,cscKis not essential for sucrose utilization. Fructose is excreted into the medium by thecscK-knockout strain in the presence of high sucrose, whereas at low sucrose (when carbon availability is limiting), fructose is utilized by the cell. Overexpression ofcscA,cscAK, orcscABcould complement the WΔcscRKABknockout mutant or confer growth on a K-12 strain which could not naturally utilize sucrose. However, phenotypic stability and relatively good growth rates were observed in the K-12 strain only when overexpressingcscAB, and full growth rate complementation in WΔcscRKABalso requiredcscAB. Our understanding of sucrose utilization can be used to improveE. coliW and engineer sucrose utilization in strains which do not naturally utilize sucrose, allowing substitution of sucrose for other, less desirable carbon sources in industrial fermentations.

2013 ◽  
Vol 79 (24) ◽  
pp. 7905-7915 ◽  
Author(s):  
Elena A. Mordukhova ◽  
Jae-Gu Pan

ABSTRACTAcetate-mediated growth inhibition ofEscherichia colihas been found to be a consequence of the accumulation of homocysteine, the substrate of the cobalamin-independent methionine synthase (MetE) that catalyzes the final step of methionine biosynthesis. To improve the acetate resistance ofE. coli, we randomly mutated the MetE enzyme and isolated a mutant enzyme, designated MetE-214 (V39A, R46C, T106I, and K713E), that conferred accelerated growth in theE. coliK-12 WE strain in the presence of acetate. Additionally, replacement of cysteine 645, which is a unique site of oxidation in the MetE protein, with alanine improved acetate tolerance, and introduction of the C645A mutation into the MetE-214 mutant enzyme resulted in the highest growth rate in acetate-treatedE. colicells among three mutant MetE proteins.E. coliWE strains harboring acetate-tolerant MetE mutants were less inhibited by homocysteine inl-isoleucine-enriched medium. Furthermore, the acetate-tolerant MetE mutants stimulated the growth of the host strain at elevated temperatures (44 and 45°C). Unexpectedly, the mutant MetE enzymes displayed a reduced melting temperature (Tm) but an enhancedin vivostability. Thus, we demonstrate improvedE. coligrowth in the presence of acetate or at elevated temperatures solely due to mutations in the MetE enzyme. Furthermore, when anE. coliWE strain carrying the MetE mutant was combined with a previously found MetA (homoserineo-succinyltransferase) mutant enzyme, the MetA/MetE strain was found to grow at 45°C, a nonpermissive growth temperature forE. coliin defined medium, with a similar growth rate as if it were supplemented byl-methionine.


2012 ◽  
Vol 57 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Migla Miskinyte ◽  
Isabel Gordo

ABSTRACTMutations causing antibiotic resistance usually incur a fitness cost in the absence of antibiotics. The magnitude of such costs is known to vary with the environment. Little is known about the fitness effects of antibiotic resistance mutations when bacteria confront the host's immune system. Here, we study the fitness effects of mutations in therpoB,rpsL, andgyrAgenes, which confer resistance to rifampin, streptomycin, and nalidixic acid, respectively. These antibiotics are frequently used in the treatment of bacterial infections. We measured two important fitness traits—growth rate and survival ability—of 12Escherichia coliK-12 strains, each carrying a single resistance mutation, in the presence of macrophages. Strikingly, we found that 67% of the mutants survived better than the susceptible bacteria in the intracellular niche of the phagocytic cells. In particular, allE. colistreptomycin-resistant mutants exhibited an intracellular advantage. On the other hand, 42% of the mutants incurred a high fitness cost when the bacteria were allowed to divide outside of macrophages. This study shows that single nonsynonymous changes affecting fundamental processes in the cell can contribute to prolonged survival ofE. coliin the context of an infection.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Kelvin G. K. Goh ◽  
Danilo G. Moriel ◽  
Steven J. Hancock ◽  
Minh-Duy Phan ◽  
Mark A. Schembri

ABSTRACT Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCE Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Anne-Claire Mahérault ◽  
Harry Kemble ◽  
Mélanie Magnan ◽  
Benoit Gachet ◽  
David Roche ◽  
...  

ABSTRACT Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum β-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.


2013 ◽  
Vol 81 (8) ◽  
pp. 2733-2742 ◽  
Author(s):  
Alexandre Bleibtreu ◽  
Pierre-Alexis Gros ◽  
Cédric Laouénan ◽  
Olivier Clermont ◽  
Hervé Le Nagard ◽  
...  

ABSTRACTThe extraintestinal virulence ofEscherichia coliis dependent on numerous virulence genes. However, there is growing evidence for a role of the metabolic properties and stress responses of strains in pathogenesis. We assessed the respective roles of these factors in strain virulence by developing phenotypic assays for measuringin vitroindividual and competitive fitness and the general stress response, which we applied to 82 commensal and extraintestinal pathogenicE. colistrains previously tested in a mouse model of sepsis. Individual fitness properties, in terms of maximum growth rates in various media (Luria-Bertani broth with and without iron chelator, minimal medium supplemented with gluconate, and human urine) and competitive fitness properties, estimated as the mean relative growth rate per generation in mixed cultures with a reference fluorescentE. colistrain, were highly diverse between strains. The activity of the main general stress response regulator, RpoS, as determined by iodine staining of the colonies, H2O2resistance, andrpoSsequencing, was also highly variable. No correlation between strain fitness and stress resistance and virulence in the mouse model was found, except that the maximum growth rate in urine was higher for virulent strains. Multivariate analysis showed that the number of virulence factors was the only independent factor explaining the virulence in mice. At the species level, growth capacity and stress resistance are heterogeneous properties that do not contribute significantly to the intrinsic virulence of the strains.


2012 ◽  
Vol 78 (6) ◽  
pp. 1752-1764 ◽  
Author(s):  
Ryan C. Fink ◽  
Elaine P. Black ◽  
Zhe Hou ◽  
Masayuki Sugawara ◽  
Michael J. Sadowsky ◽  
...  

ABSTRACTAn increasing number of outbreaks of gastroenteritis recently caused byEscherichia coliO157:H7 have been linked to the consumption of leafy green vegetables. Although it is known thatE. colisurvives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identifyE. coligenes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparingE. coliK-12, a model system, andE. coliO157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, includingtnaA(33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsAandybiM) and curli production (csgAandcsgB) were significantly upregulated inE. coliK-12 and O157:H7. BothcsgAandbhsA(ycfR) mutants were impaired in the long-term colonization of the leaf surface, but onlycsgAmutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction ofE. coliK-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.


2011 ◽  
Vol 78 (4) ◽  
pp. 1004-1014 ◽  
Author(s):  
Michelle Q. Carter ◽  
Jacqueline W. Louie ◽  
Clifton K. Fagerquist ◽  
Omar Sultan ◽  
William G. Miller ◽  
...  

ABSTRACTThe periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH < 3) inEscherichia coliandShigellaspp. Here we investigated the roles of HdeA and HdeB in the survival of various enterohemorrhagicE. coli(EHEC) following exposure to pH 2.0. Similar to K-12 strains, the acid protections conferred by HdeA and HdeB in EHEC O145 were significant: loss of HdeA and HdeB led to over 100- to 1,000-fold reductions in acid survival, depending on the growth condition of prechallenge cells. However, this protection was much less inE. coliO157:H7 strains. Deletion ofhdeBdid not affect the acid survival of cells, and deletion ofhdeAled to less than a 5-fold decrease in survival. Sequence analysis of thehdeABoperon revealed a point mutation at the putative start codon of thehdeBgene in all 26E. coliO157:H7 strains analyzed, which shifted the ATG start codon to ATA. This mutation correlated with the lack of HdeB inE. coliO157:H7; however, the plasmid-borne O157-hdeBwas able to restore partially the acid resistance in anE. coliO145ΔhdeABmutant, suggesting the potential function of O157-HdeB as an acid chaperone. We conclude thatE. coliO157:H7 strains have evolved acid survival strategies independent of the HdeA/B chaperones and are more acid resistant than nonpathogenic K-12 for cells grown under nonfavorable culturing conditions such as in Luria-Bertani no-salt broth at 28°C. These results suggest a divergent evolution of acid resistance mechanisms withinE. coli.


2017 ◽  
Vol 200 (1) ◽  
Author(s):  
Sasikiran Pasupuleti ◽  
Nitesh Sule ◽  
Michael D. Manson ◽  
Arul Jayaraman

ABSTRACTThe detection of norepinephrine (NE) as a chemoattractant byEscherichia colistrain K-12 requires the combined action of the TynA monoamine oxidase and the FeaB aromatic aldehyde dehydrogenase. The role of these enzymes is to convert NE into 3,4-dihydroxymandelic acid (DHMA), which is a potent chemoattractant sensed by the Tsr chemoreceptor. These two enzymes must be induced by prior exposure to NE, and cells that are exposed to NE for the first time initially show minimal chemotaxis toward it. The induction of TynA and FeaB requires the QseC quorum-sensing histidine kinase, and the signaling cascade requires new protein synthesis. Here, we demonstrate that the cognate response regulator for QseC, the transcription factor QseB, is also required for induction. The related quorum-sensing kinase QseE appears not to be part of the signaling pathway, but its cognate response regulator, QseF, which is also a substrate for phosphotransfer from QseC, plays a nonessential role. The promoter of thefeaRgene, which encodes a transcription factor that has been shown to be essential for the expression oftynAandfeaB, has two predicted QseB-binding sites. One of these sites appears to be in an appropriate position to stimulate transcription from the P1promoter of thefeaRgene. This study unites two well-known pathways: one for expression of genes regulated by catecholamines (QseBC) and one for expression of genes required for metabolism of aromatic amines (FeaR, TynA, and FeaB). This cross talk allowsE. colito convert the host-derived and chemotactically inert NE into the potent bacterial chemoattractant DHMA.IMPORTANCEThe chemotaxis ofE. coliK-12 to norepinephrine (NE) requires the conversion of NE to 3,4-dihydroxymandleic acid (DHMA), and DHMA is both an attractant and inducer of virulence gene expression for a pathogenic enterohemorrhagicE. coli(EHEC) strain. The induction of virulence by DHMA and NE requires QseC. The results described here show that the cognate response regulator for QseC, QseB, is also required for conversion of NE into DHMA. Production of DHMA requires induction of a pathway involved in the metabolism of aromatic amines. Thus, the QseBC sensory system provides a direct link between virulence and chemotaxis, suggesting that chemotaxis to host signaling molecules may require that those molecules are first metabolized by bacterial enzymes to generate the actual chemoattractant.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Sébastien O. Leclercq ◽  
Maxime Branger ◽  
David G. E. Smith ◽  
Pierre Germon

Escherichia coli is a very versatile species for which diversity has been explored from various perspectives highlighting, for example, phylogenetic groupings and pathovars, as well as a wide range of O serotypes. The highly variable O-antigen, the most external part of the lipopolysaccharide (LPS) component of the outer membrane of E. coli , is linked to the innermost lipid A through the core region of LPS of which five different structures, denominated K-12, R1, R2, R3 and R4, have been characterized so far. The aim of the present study was to analyse the prevalence of these LPS core types in the E. coli species and explore their distribution in the different E. coli phylogenetic groups and in relationship with the virulence gene repertoire. Results indicated an uneven distribution of core types between the different phylogroups, with phylogroup A strains being the most diverse in terms of LPS core types, while phylogroups B1, D and E strains were dominated by the R3 type, and phylogroups B2 and C strains were dominated by the R1 type. Strains carrying the LEE virulence operon were mostly of the R3 type whatever the phylogroup while, within phylogroup B2, strains carrying a K-12 core all belonged to the complex STc131, one of the major clones of extraintestinal pathogenic E. coli (ExPEC) strains. The origin of this uneven distribution is discussed but remains to be fully explained, as well as the consequences of carrying a specific core type on the wider aspects of bacterial phenotype.


2020 ◽  
Vol 94 (12) ◽  
Author(s):  
Peipei Chen ◽  
Huzhi Sun ◽  
Huiying Ren ◽  
Wenhua Liu ◽  
Guimei Li ◽  
...  

ABSTRACT Bp7 is a T-even phage with a broad host range specific to Escherichia coli, including E. coli K-12. The receptor binding protein (RBP) of bacteriophages plays an important role in the phage adsorption process and determines phage host range, but the molecular mechanism involved in host recognition of phage Bp7 remains unknown. In this study, the interaction between phage Bp7 and E. coli K-12 was investigated. Based on homology alignment, amino acid sequence analysis, and a competitive assay, gp38, located at the tip of the long tail fiber, was identified as the RBP of phage Bp7. Using a combination of in vivo and in vitro approaches, including affinity chromatography, gene knockout mutagenesis, a phage plaque assay, and phage adsorption kinetics analysis, we identified the LamB and OmpC proteins on the surface of E. coli K-12 as specific receptors involved in the first step of reversible phage adsorption. Genomic analysis of the phage-resistant mutant strain E. coli K-12-R and complementation tests indicated that HepI of the inner core of polysaccharide acts as the second receptor recognized by phage Bp7 and is essential for successful phage infection. This observation provides an explanation of the broad host range of phage Bp7 and provides insight into phage-host interactions. IMPORTANCE The RBPs of T4-like phages are gp37 and gp38. The interaction between phage T4 RBP gp37 and its receptors has been clarified by many reports. However, the interaction between gp38 and its receptors during phage adsorption is still not completely understood. Here, we identified phage Bp7, which uses gp38 as an RBP, and provided a good model to study the phage-host interaction mechanisms in an enterobacteriophage. Our study revealed that gp38 of phage Bp7 recognizes the outer membrane proteins (OMPs) LamB and OmpC of E. coli K-12 as specific receptors and binds with them reversibly. HepI of the inner-core oligosaccharide is the second receptor and binds with phage Bp7 irreversibly to begin the infection process. Determining the interaction between the phage and its receptors will help elucidate the mechanisms of phage with a broad host range and help increase understanding of the phage infection mechanism based on gp38.


Sign in / Sign up

Export Citation Format

Share Document