Two Intracellular Symbiotic Bacteria from the Mulberry Psyllid Anomoneura mori (Insecta, Homoptera)

1998 ◽  
Vol 64 (10) ◽  
pp. 3599-3606 ◽  
Author(s):  
Takema Fukatsu ◽  
Naruo Nikoh

ABSTRACT We characterized the intracellular symbiotic bacteria of the mulberry psyllid Anomoneura mori by performing a molecular phylogenetic analysis combined with in situ hybridization. In its abdomen, the psyllid has a large, yellow, bilobed mycetome (or bacteriome) which consists of many round uninucleated mycetocytes (or bacteriocytes) enclosing syncytial tissue. The mycetocytes and syncytium harbor specific intracellular bacteria, the X-symbionts and Y-symbionts, respectively. Almost the entire length of the bacterial 16S ribosomal DNA (rDNA) was amplified and cloned from the whole DNA ofA. mori, and two clones, the A-type and B-type clones, were identified by restriction fragment length polymorphism analysis. In situ hybridization with specific oligonucleotide probes demonstrated that the A-type and B-type 16S rDNAs were derived from the X-symbionts and Y-symbionts, respectively. Molecular phylogenetic analyses of the 16S rDNA sequences showed that these symbionts belong to distinct lineages in the γ subdivision of the Proteobacteria. No 16S rDNA sequences in the databases were closely related to the 16S rDNA sequences of the X- and Y-symbionts. However, the sequences that were relatively closely related to them were the sequences of endosymbionts of other insects. The nucleotide compositions of the 16S rDNAs of the X- and Y-symbionts were highly AT biased, and the sequence of the X-symbiont was the most AT-rich bacterial 16S rDNA sequence reported so far.

2004 ◽  
Vol 54 (2) ◽  
pp. 487-491 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Kook Hee Kang ◽  
Tae-Kwang Oh ◽  
Yong-Ha Park

A Gram-negative, motile, non-spore-forming, rod-shaped strain, TF-27T (=KCCM 41648T=JCM 11814T), was isolated from a tidal flat in Korea. This organism grew well at 25–35 °C, with optimum growth at 30 °C. Strain TF-27T grew optimally in the presence of 2 % NaCl; it did not grow without NaCl or in the presence of >8 % NaCl. Strain TF-27T simultaneously contained both menaquinones and ubiquinones as isoprenoid quinones. The predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The major fatty acids in strain TF-27T were iso-C15 : 0 (20·6 %) and iso-C15 : 0 2-OH and/or C16 : 1 ω7c (21·1 %). The DNA G+C content of strain TF-27T was 42 mol%. Phylogenetic analyses based on 16S rDNA sequences showed that strain TF-27T falls within the radiation of the cluster that is encompassed by the genus Shewanella. Levels of 16S rDNA sequence similarity between strain TF-27T and the type strains of Shewanella species were 93·2–96·8 %. On the basis of phenotypic properties and phylogenetic data, strain TF-27T should be placed in the genus Shewanella as a novel species, for which the name Shewanella gaetbuli sp. nov. is proposed.


2001 ◽  
Vol 67 (11) ◽  
pp. 5315-5320 ◽  
Author(s):  
Takema Fukatsu

ABSTRACT A novel secondary intracellular symbiotic bacterium from aphids of the genus Yamatocallis (subfamily Drepanosiphinae) was characterized by using molecular phylogenetic analysis, in situ hybridization, and diagnostic PCR detection. In the aphid tissues, this bacterium (tentatively designated YSMS [Yamatocallis secondary mycetocyte symbiont]) was found specifically in large cells surrounded by primary mycetocytes harboringBuchnera cells. Of nine drepanosiphine aphids examined, YSMS was detected in only two species of the same genus,Yamatocallis tokyoensis and Yamatocallis hirayamae. In natural populations of these aphids, YSMS was present in 100% of the individuals. Phylogenetic analysis based on 16S ribosomal DNA (rDNA) sequences demonstrated that YSMS ofY. tokyoensis and Y. hirayamae constitute a distinct and isolated clade in the γ subdivision of the classProteobacteria. No 16S rDNA sequences of secondary endosymbionts characterized so far from other aphids showed phylogenetic affinity to YSMS. Based on these results, I suggest that YSMS was acquired by an ancestor of the genus Yamatocallisand has been conserved throughout the evolution of the lineage. By using the nucleotide substitution rate for 16S rDNA ofBuchnera spp., the time of acquisition of YSMS was estimated to be about 13 to 26 million years ago, in the Miocene epoch of the Tertiary period.


2004 ◽  
Vol 54 (3) ◽  
pp. 961-968 ◽  
Author(s):  
Einat Zchori-Fein ◽  
Steve J. Perlman ◽  
Suzanne E. Kelly ◽  
Nurit Katzir ◽  
Martha S. Hunter

Previously, analysis of 16S rDNA sequences placed a newly discovered lineage of bacterial symbionts of arthropods in the ‘Bacteroidetes’. This symbiont lineage is associated with a number of diverse host reproductive manipulations, including induction of parthenogenesis in several Encarsia parasitoid wasps (Hymenoptera: Aphelinidae). In this study, electron microscopy and phylogenetic analysis of the 16S rRNA and gyrB genes of symbionts from Encarsia hispida and Encarsia pergandiella are used to describe and further characterize these bacteria. Phylogenetic analyses based on these two genes showed that the Encarsia symbionts are allied with the Cytophaga aurantiaca lineage within the ‘Bacteroidetes’, with their closest described relative being the acanthamoeba symbiont ‘Candidatus Amoebophilus asiaticus’. The Encarsia symbionts share 97 % 16S rDNA sequence similarity with Brevipalpus mite and Ixodes tick symbionts and 88 % sequence similarity with ‘Candidatus A. asiaticus’. Electron microscopy revealed that many of the bacteria found in the ovaries of the two Encarsia species contained a regular, brush-like array of microfilament-like structures that appear to be characteristic of the symbiont. Finally, the role of this bacterium in parthenogenesis induction in E. hispida was confirmed. Based on phylogenetic analyses and electron microscopy, classification of the symbionts from Encarsia as ‘Candidatus Cardinium hertigii’ is proposed.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 429-429 ◽  
Author(s):  
I.-M. Lee ◽  
K. D. Bottner ◽  
J. E. Munyaneza ◽  
G. A. Secor ◽  
N. C. Gudmestad

An epidemic of purple top disease of potato (Solanum tuberosum) occurred in the Columbia Basin Region of Washington and Oregon in 2002 and 2003, causing great economic loss in the potato industry (1). Symptoms of potato purple top (PPT) were characterized by upright terminal shoots, upward leaf rolling, chlorosis, red or purplish discoloration of new leaves, proliferation of axillary shoots with basal swelling, and the formation of aerial tubers. Preliminary studies on PPT disease suggested phytoplasma as a possible cause (1). In this study, 78 potato samples (including five asymptomatic) were collected from five fields throughout the region. A nested polymerase chain reaction (PCR) with primer pair P1/P7 in the first amplification followed with primer pair R16F2n/R16R2 was performed to detect the presence of phytoplasmas in infected plants (2). Restriction fragment length polymorphism (RFLP) and phylogenetic analyses of amplified 16S rDNA sequences were used for phytoplasma identification. Eighty-four percent (63% in the first amplification) of the symptomatic samples and 60% (0% in the first amplification) of the asymptomatic samples tested positive. Low phytoplasma titers and the presence of PCR inhibitors accounts for the low detection rate in the first PCR amplifications. RFLP analyses of 16S rDNA with enzymes MseI, AluI, HhaI, RsaI, and HpaII indicated that the phytoplasma associated with PPT belonged to the clover proliferation (CP) group (16SrVI) subgroup A (16SrVI-A) (2). 16SrVI-A currently consists of three members, CP (GenBank Accession No. AY500130), potato witches'-broom (GenBank Accession No. AY500818), and vinca virescence (VR) (GenBank Accession No. AY500817), a strain of beet leafhopper-transmitted virescence agent (BLTVA) phytoplasma (2). The taxonomic affiliation of PPT phytoplasma was confirmed by phylogenetic analysis of cloned 16S rDNA (GenBank Accession Nos. PPT4, AY496004; PPT8, AY496005). The 16S rDNA sequences of the PPT strains were closely related to VR with 99.7% sequence homology compared with 99.2% with CP. A high correlation between the symptoms and the presence of 16SrVI-A phytoplasmas in the potato plants suggests that these phytoplasmas play an etiological role in PPT disease. To gain further evidence, a modified test of Koch's postulates was conducted. Infected tissues from four phytoplasma-positive potato samples (including PPT4 and PPT8) were grafted onto healthy potato seedlings. Within 60 days after grafting, the potato seedlings developed symptoms similar to those in the original diseased samples. The newly infected plants were maintained through cuttings. RFLP analysis of 16S rDNA indicated that the phytoplasmas detected in each of the seedlings and cuttings were identical to those in the scions. These results confirmed the probable etiological role of CP group, subgroup 16SrVI-A phytoplasma strains in PPT disease in Washington and Oregon. There are two other confirmed cases of phytoplasmas (BLTVA and aster yellows phytoplasma) associated with PPT disease in Utah (4) and Mexico (3). References: (1) P. B. Hamm et al. Potato Prog. Vol. 3, No. 1, 2003. (2) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (3) N. E. Leyva-Lopez et al. Can. J. Microbiol. 48:1062, 2002. (4) C. D. Smart et al. Phytopathology 83:1399, 1993.


2000 ◽  
Vol 38 (10) ◽  
pp. 3623-3630 ◽  
Author(s):  
Michel Drancourt ◽  
Claude Bollet ◽  
Antoine Carlioz ◽  
Rolland Martelin ◽  
Jean-Pierre Gayral ◽  
...  

Some bacteria are difficult to identify with phenotypic identification schemes commonly used outside reference laboratories. 16S ribosomal DNA (rDNA)-based identification of bacteria potentially offers a useful alternative when phenotypic characterization methods fail. However, as yet, the usefulness of 16S rDNA sequence analysis in the identification of conventionally unidentifiable isolates has not been evaluated with a large collection of isolates. In this study, we evaluated the utility of 16S rDNA sequencing as a means to identify a collection of 177 such isolates obtained from environmental, veterinary, and clinical sources. For 159 isolates (89.8%) there was at least one sequence in GenBank that yielded a similarity score of ≥97%, and for 139 isolates (78.5%) there was at least one sequence in GenBank that yielded a similarity score of ≥99%. These similarity score values were used to defined identification at the genus and species levels, respectively. For isolates identified to the species level, conventional identification failed to produce accurate results because of inappropriate biochemical profile determination in 76 isolates (58.7%), Gram staining in 16 isolates (11.6%), oxidase and catalase activity determination in 5 isolates (3.6%) and growth requirement determination in 2 isolates (1.5%). Eighteen isolates (10.2%) remained unidentifiable by 16S rDNA sequence analysis but were probably prototype isolates of new species. These isolates originated mainly from environmental sources (P = 0.07). The 16S rDNA approach failed to identify Enterobacter andPantoea isolates to the species level (P = 0.04; odds ratio = 0.32 [95% confidence interval, 0.10 to 1.14]). Elsewhere, the usefulness of 16S rDNA sequencing was compromised by the presence of 16S rDNA sequences with >1% undetermined positions in the databases. Unlike phenotypic identification, which can be modified by the variability of expression of characters, 16S rDNA sequencing provides unambiguous data even for rare isolates, which are reproducible in and between laboratories. The increase in accurate new 16S rDNA sequences and the development of alternative genes for molecular identification of certain taxa should further improve the usefulness of molecular identification of bacteria.


1998 ◽  
Vol 164 (1) ◽  
pp. 119-124 ◽  
Author(s):  
Shigeto Otsuka ◽  
Shoichiro Suda ◽  
Renhui Li ◽  
Masayuki Watanabe ◽  
Hiroshi Oyaizu ◽  
...  

2007 ◽  
Vol 21 (3) ◽  
pp. 279 ◽  
Author(s):  
Kevin C. Holston ◽  
Michael E. Irwin ◽  
Brian M. Wiegmann

Phylogenetic analyses using 28S rDNA, elongation factor (EF)-1α, and mt 16S rDNA sequences were performed to test the monophyly of Thereva Latreille. Two of the three Afrotropical Thereva species groups lack the genitalia characters that unambiguously diagnose Thereva in the Holarctic Region, but phylogenetic relationships among Thereva species groups and therevine genera are poorly understood. Using an extensive taxonomic sample (39 of the 62 therevine genera) and Thereva, sensu lato (15 spp.), simultaneous analyses of all three gene partitions recovered Nearctic and Palaearctic Thereva species in a well supported clade that includes the Afrotropical seminitida-group but excludes the Afrotropical analis- and turneri-groups. Stronger phylogenetic signal from the EF-1α partition, measured by the skewness statistic and proportion of total parsimony informative characters, dominated conflicting signal from the 16S partition and weaker, but more congruent, signal from 28S. Reducing the taxonomic sample in analyses of Therevinae reduced homoplasy, increased phylogenetic structure and partitioned Bremer support values and reduced incongruence with 28S for the 16S partition. Although molecular analyses yielded partial recovery of informal therevine genus-groups, morphological diagnoses of higher-level groups are poorly supported with the exception of Cyclotelini. The ‘Holarctic radiation’ refers to a diverse clade of genera closely related to Pandivirilia Irwin & Lyneborg and Acrosathe Irwin & Lyneborg widely distributed throughout the Holarctic Region that is the sister-group to Thereva, sensu stricto. Results from these analyses underscore the importance of male and female genitalia characters in recognising monophyletic groups and regional endemism in therevine diversification.


1999 ◽  
Vol 65 (6) ◽  
pp. 2585-2591 ◽  
Author(s):  
Nyree J. West ◽  
David J. Scanlan

ABSTRACT The in situ community structure of Prochlorococcuspopulations in the eastern North Atlantic Ocean was examined by analysis of Prochlorococcus 16S rDNA sequences with three independent approaches: cloning and sequencing, hybridization to specific oligonucleotide probes, and denaturing gradient gel electrophoresis (DGGE). The hybridization of high-light (HL) and low-light (LL) Prochlorococcus genotype-specific probes to two depth profiles of PCR-amplified 16S rDNA sequences revealed that in these two stratified water columns, an obvious niche-partitioning ofProchlorococcus genotypes occurred. In each water column a shift from the HL to the LL genotype was observed, a transition correlating with the depth of the surface mixed layer (SML). Only the HL genotype was found in the SML in each water column, whereas the LL genotype was distributed below the SML. The range of in situ irradiance to which each genotype was subjected within these distinct niches was consistent with growth irradiance studies of cultured HL- and LL-adapted Prochlorococcus strains. DGGE analysis and the sequencing of Prochlorococcus 16S rDNA clones were in full agreement with the genotype-specific oligonucleotide probe hybridization data. These observations of a partitioning ofProchlorococcus genotypes in a stratified water column provide a genetic basis for the dim and brightProchlorococcus populations observed in flow cytometric signatures in several oceanic provinces.


2004 ◽  
Vol 54 (3) ◽  
pp. 851-855 ◽  
Author(s):  
Wan-Taek Im ◽  
Hee-Sung Bae ◽  
Akira Yokota ◽  
Sung Taik Lee

A 4-chlorophenol-degrading bacterial strain, formerly designated as a strain of Comamonas testosteroni, was reclassified as a member of the genus Herbaspirillum based on its phenotypic and chemotaxonomic characteristics, as well as phylogenetic analysis using 16S rDNA sequences. Phylogenetic inference based on 16S rDNA sequences showed that strain CPW301T clusters in a phylogenetic branch that contains Herbaspirillum species. 16S rDNA sequence similarity of strain CPW301T to species of the genus Herbaspirillum with validly published names is in the range 98·7–98·9 %. Despite the considerably high 16S rDNA sequence similarity, strain CPW301T could be distinguished clearly from type strains of Herbaspirillum species with validly published names by DNA–DNA relatedness values, which were <15·7 %. The genomic DNA G+C content of strain CPW301T is 61·3 mol%. The predominant ubiquinone is Q-8 and the major cellular fatty acids are C16 : 0 and cyclo-C17 : 0. The strain does not fix nitrogen and is not plant-associated. It is an aerobic rod with one unipolar flagellum. On the basis of these characteristics, a novel Herbaspirillum species, Herbaspirillum chlorophenolicum sp. nov., is proposed. The type strain of the novel species is strain CPW301T (=KCTC 12096T=IAM 15024T).


Sign in / Sign up

Export Citation Format

Share Document