scholarly journals Uranium(VI) Reduction by Anaeromyxobacter dehalogenans Strain 2CP-C

2006 ◽  
Vol 72 (5) ◽  
pp. 3608-3614 ◽  
Author(s):  
Qingzhong Wu ◽  
Robert A. Sanford ◽  
Frank E. L�ffler

ABSTRACT Previous studies demonstrated growth of Anaeromyxobacter dehalogenans strain 2CP-C with acetate or hydrogen as the electron donor and Fe(III), nitrate, nitrite, fumarate, oxygen, or ortho-substituted halophenols as electron acceptors. In this study, we explored and characterized U(VI) reduction by strain 2CP-C. Cell suspensions of fumarate-grown 2CP-C cells reduced U(VI) to U(IV). More-detailed growth studies demonstrated that hydrogen was the required electron donor for U(VI) reduction and could not be replaced by acetate. The addition of nitrate to U(VI)-reducing cultures resulted in a transitory increase in U(VI) concentration, apparently caused by the reoxidation of reduced U(IV), but U(VI) reduction resumed following the consumption of N-oxyanions. Inhibition of U(VI) reduction occurred in cultures amended with Fe(III) citrate, or citrate. In the presence of amorphous Fe(III) oxide, U(VI) reduction proceeded to completion but the U(VI) reduction rates decreased threefold compared to control cultures. Fumarate and 2-chlorophenol had no inhibitory effects on U(VI) reduction, and both electron acceptors were consumed concomitantly with U(VI). Since cocontaminants (e.g., nitrate, halogenated compounds) and bioavailable ferric iron are often encountered at uranium-impacted sites, the metabolic versatility makes Anaeromyxobacter dehalogenans a promising model organism for studying the complex interaction of multiple electron acceptors in U(VI) reduction and immobilization.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yong Guo ◽  
Tomo Aoyagi ◽  
Tomoyuki Hori

Abstract Background Halotolerant Fe (III) oxide reducers affiliated in the family Desulfuromonadaceae are ubiquitous and drive the carbon, nitrogen, sulfur and metal cycles in marine subsurface sediment. Due to their possible application in bioremediation and bioelectrochemical engineering, some of phylogenetically close Desulfuromonas spp. strains have been isolated through enrichment with crystalline Fe (III) oxide and anode. The strains isolated using electron acceptors with distinct redox potentials may have different abilities, for instance, of extracellular electron transport, surface recognition and colonization. The objective of this study was to identify the different genomic signatures between the crystalline Fe (III) oxide-stimulated strain AOP6 and the anode-stimulated strains WTL and DDH964 by comparative genome analysis. Results The AOP6 genome possessed the flagellar biosynthesis gene cluster, as well as diverse and abundant genes involved in chemotaxis sensory systems and c-type cytochromes capable of reduction of electron acceptors with low redox potentials. The WTL and DDH964 genomes lacked the flagellar biosynthesis cluster and exhibited a massive expansion of transposable gene elements that might mediate genome rearrangement, while they were deficient in some of the chemotaxis and cytochrome genes and included the genes for oxygen resistance. Conclusions Our results revealed the genomic signatures distinctive for the ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. These findings highlighted the different metabolic abilities, such as extracellular electron transfer and environmental stress resistance, of these phylogenetically close bacterial strains, casting light on genome evolution of the subsurface Fe (III) oxide reducers.


1995 ◽  
Vol 60 (6) ◽  
pp. 977-982
Author(s):  
S. Sugunan ◽  
V. Meera

The electron donor properties of perovskite-type mixed oxides (LaFeO3, PrFeO3, SmFeO3, LaCoO3, PrCoO3, SmCoO3, LaNiO3, PrNiO3 and SmNiO3) were studied based on the adsorption of electron acceptors exhibiting different electron affinity viz. 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrachloro-1,4-benzoquinone, p-dinitrobenzene, and m-dinitrobenzene. The surface acidity/basicity of the oxides was determined using a set of Hammett indicators. The data were correlated with the catalytic activity of the oxides for the reduction of cyclohexanone with 2-propanol.


2017 ◽  
Author(s):  
Dawn E Holmes ◽  
Roberto Orelana ◽  
Ludovic Giloteaux ◽  
Li-Ying Wang ◽  
Pravin Shrestha ◽  
...  

AbstractPrevious studies ofin situbioremediation of uranium-contaminated groundwater with acetate injections have focused on the role ofGeobacterspecies in U(VI) reduction because of a lack of other abundant known U(VI)-reducing microorganisms. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcripts during an acetate-injection field experiment demonstrated that acetoclastic methanogens from the genusMethanosarcinawere enriched after 40 days of acetate amendment. The increased abundance ofMethanosarcinacorresponded with an accumulation of methane in the groundwater. An enrichment culture dominated by aMethanosarcinaspecies with the sameMethanosarcina mcrAsequence that predominated in the field experiment could effectively convert acetate to methane. In order to determine whetherMethanosarcinaspecies could be participating in U(VI) reduction in the subsurface, cell suspensions ofM. barkeriwere incubated in the presence of U(VI) with acetate provided as the electron donor. U(VI) was reduced by metabolically activeM. barkericells, however, no U(VI) reduction was observed in inactive controls. These results demonstrate thatMethanosarcinaspecies could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth ofGeobacterspecies. The results also suggest thatMethanosarcinahave the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments.


2006 ◽  
Vol 72 (9) ◽  
pp. 5933-5941 ◽  
Author(s):  
Man Jae Kwon ◽  
Kevin T. Finneran

ABSTRACT The potential for humic substances to stimulate the reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was investigated. This study describes a novel approach for the remediation of RDX-contaminated environments using microbially mediated electron shuttling. Incubations without cells demonstrated that reduced AQDS transfers electrons directly to RDX, which was reduced without significant accumulation of the nitroso intermediates. Three times as much reduced AQDS (molar basis) was needed to completely reduce RDX. The rate and extent of RDX reduction differed greatly among electron shuttle/acceptor amendments for resting cell suspensions of Geobacter metallireducens and G. sulfurreducens with acetate as the sole electron donor. AQDS and purified humic substances stimulated the fastest rate of RDX reduction. The nitroso metabolites did not significantly accumulate in the presence of AQDS or humic substances. RDX reduction in the presence of poorly crystalline Fe(III) was relatively slow and metabolites transiently accumulated. However, adding humic substances or AQDS to Fe(III)-containing incubations increased the reduction rates. Cells of G. metallireducens alone reduced RDX; however, the rate of RDX reduction was slow relative to AQDS-amended incubations. These data suggest that extracellular electron shuttle-mediated RDX transformation is not organism specific but rather is catalyzed by multiple Fe(III)- and humic-reducing species. Electron shuttle-mediated RDX reduction may eventually become a rapid and effective cleanup strategy in both Fe(III)-rich and Fe(III)-poor environments.


2019 ◽  
Vol 55 (79) ◽  
pp. 11823-11832 ◽  
Author(s):  
Jonathon L. Yuly ◽  
Carolyn E. Lubner ◽  
Peng Zhang ◽  
David N. Beratan ◽  
John W. Peters

Electron bifurcation moves electrons from a two-electron donor to reduce two spatially separated one-electron acceptors.


ChemPhysChem ◽  
2015 ◽  
Vol 16 (6) ◽  
pp. 1245-1250 ◽  
Author(s):  
David S. Josey ◽  
Jeffrey S. Castrucci ◽  
Jeremy D. Dang ◽  
Benoît H. Lessard ◽  
Timothy P. Bender

Sign in / Sign up

Export Citation Format

Share Document